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Preface

This report is intended to provide a concise but lucid explanation and
derivation of the fundamentals of spread-spectrum code-division multi-
ple access (CDMA). The level of presentation is suitable for those with
a solid background in the theory of digital communications. Throughout
the report, there are many streamlined derivations, new derivations, and
simplifications of the classical theory. Comprehensive mathematical de-
tails, some of them difficult to find elsewhere, are assembled in the ap-
pendices. Sections 1 and 2 contain brief overviews of fading and diver-
sity that provide the basic theory accessed by the remainder of the report.
Maximal-ratio combining, equal-gain combining, and selection diversity
are distinguished and compared. The rake receiver and the impact of error-
correcting codes on fading communications are examined. Direct-sequence
CDMA is considered in Section 3. Bit error probabilities for a number of
direct-sequence systems are derived. Power-control issues in cellular net-
works are emphasized and new results are presented. Diversity aspects
of multicarrier and single-carrier systems are compared. Section 4 treats
frequency-hopping CDMA for both peer-to-peer and cellular systems. The
advantages of frequency hopping in network applications and the effects of
spatial diversity, spectral splatter, and the number of equivalent frequency
channels are explained.
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1. Fading for Wireless Communications

11 Path Loss and Shadowing

Free-space propagation losses of electromagnetic waves vary inversely with
the square of the distance between a transmitter and a receiver. For terres-
trial propagation, when one signal traversing a direct path and another per-
fectly reflected from a plane interfere at a receiver, it is found that the prop-
agation loss varies as the inverse of the fourth-power of the distance. Thus,

itis natural to seek a power-law variation for the average received power in
a specified geographic area as a function of distance. For terrestrial wireless
communications, measurements averaged over many different positions of
a transmitter and a receiver in a specified geographic area confirm that the
average received power, which is called the area-mean power, does tend to
vary inversely as a power of the transmitter-receiver distance r. It is found
that the area-mean power is approximately given by

Pa=Po <%) ” (1-1)

where py is the average received power when the distance is » = Ry, and
B is the attenuation power law. The parameters py and 3 are functions of the
carrier frequency, antenna heights, terrain characteristics, vegetation, and
various characteristics of the propagation medium. Typically, the param-
eters vary with distance, but are constant within a range of distances. A
typical value of the attenuation power law for urban areas and microwave
frequencies is 8 = 4. The power law increases with the carrier frequency.

For a specific propagation path, the received local-mean power departs from
the area-mean power due to shadowing, which is the effect of diffractions
and propagation conditions that are path-dependent. Each diffraction due
to obstructing terrain and each reflection from an obstacle causes the sig-
nal power to be multiplied by an attenuation factor. Thus, the received
signal power is often the product of many factors, and hence the loga-
rithm of the signal power is the sum of many factors. If each factor is mod-
eled as a uniformly bounded, independent random variable that varies
from path to path, then the central-limit theorem implies that the loga-
rithm of the received signal power has an approximately normal distri-
bution if the number of attenuation factors is large enough. Extensive em-
pirical data confirms that the received local-mean power after transmission
over a randomly selected propagation path with a fixed distance is approx-
imately lognormally distributed. Thus, the shadowing model specifies that
the local-mean power has the form

P = pg10%/1° (1-2)




1.2 Fading

where the shadowing factor £ is a zero-mean random variable with a nor-
mal distribution. The standard deviation of ¢ is denoted by o5, which is
expressed in decibels. From (1-1) and (1-2), it follows that the probability
distribution function of the normalized local-mean power, p;/po, is

1 a r\?

F(z)=1 5 erfc{;; In |:x (7}‘—‘5) ] } (1-3)
where erfc{ } denotes the complementary error function, In[ ] denotes the
natural logarithm, and a = (10logioe)/ V2 . The standard deviation o in-
creases with carrier frequency and terrain irregularity and often exceeds
10 dB for terrestrial communications. The value of the shadowing factor
for a propagation path is usually strongly correlated with its value for a
nearby propagation path. For mobile communications, the typical time in-

terval during which the shadowing factor is nearly constant is a second or
more.

Fading, which is endemic in mobile, long-distance, high-frequency, and
other communication channels, causes power fluctuations about the local-
mean power. Fading occurs at much faster rate than shadowing. During an
observation interval in which the shadowing factor is nearly constant, the
received signal power may be expressed as the product

Pr = Pal05/002(t) (1-4)

where the factor o?(t) is due to the fading. Since ¢ is fixed, the local-mean
power is

P = Elp;] = pa 105 E[a?(¢))] (1-5)

where E[ ] denotes the expected value.

A signal experiences fading when the interaction of multipath components
and time- or frequency-varying channel conditions cause significant fluc-
tuations in its amplitude at a receiver. Multipath components of a signal are
generated by inhomogeneities in the propagation medium or reflections
from obstacles. These components travel along different paths before be-
ing recombined at the receiver. Because of the different time-varying de-
lays and attenuations encountered by the multipath components, the re-
combined signal is a distorted version of the original transmitted signal.
Fading may be classified as time-selective, frequency-selective, or both.
Time-selective fading is fading caused by the movement of the transmitter or
receiver or by changes in the propagation medium. Frequency-selective fad-
ing is fading caused by the different delays of the multipath components,
which may affect certain frequencies more than others. The following con-
cise development of fading theory emphasizes basic physical mechanisms.
More general theoretical frameworks [1], [2], [3], are available.



A bandpass transmitted signal can be expressed as

51(t) = Re[m(t) exp(j2m f.t)] (1-6)

where m(t) denotes its complex envelope, f. denotes its carrier frequency,
and Re[ ] denotes the real part. Transmission over a time-varying multipath
channel of N () paths produces a received bandpass signal that consists of
* the sum of N(t) waveforms. The ith waveform is the transmitted signal
delayed by time 7;(¢), attenuated by a factor a;(t) that depends on the path
loss and shadowing, and shifted in frequency by the amount f4(t) due to

“ the Doppler effect. Assuming that fg;(t) is constant during the path delays,
the received signal may be expressed as
sr(t) = Re[r1(t) exp(j2m f.t)] (1-7)

where the received complex envelope is

N(t)

ri(t) = 3 _ ailt) expligs(t)lmlt — 7i(1)] (1-8)
and its phase is

@i(t) = =27 feri(t) + 2m fu;(8) [t — 7:(2)] (1-9)

The Doppler shift arises because of the relative motion between the trans-
mitter and the receiver. In Figure 1(a), the receiver is moving at speed v(t)
and the angle between the velocity vector and the propagation direction of
an electromagnetic wave is ;(t). Thus, the received frequency is increased
by the Doppler shift

fastt) = £.2D cos it (1-10)

where c is the speed of an electromagnetic wave. In Figure 1(b), the trans-
mitter is moving at speed v(¢) and there is a reflecting surface that changes
the arrival angle of the electromagnetic wave at the receiver. If ;(¢) repre-
sents the angle between the velocity vector and the initial direction of the
electromagnetic wave, then (1-10) again gives the Doppler shift.

1.3 Time-Selective Fading

To analyze time-selective fading, it is assumed that N(¢) = N for the time
interval of interest and that the differences in the time delays along the
various paths are small compared with the inverse of the signal band-
width. Therefore, the received multipath components overlap in time and
are called unresolvable multipath components. If the time origin is chosen to
coincide with the arrival time of the first multipath component at a receiver,
then the received complex envelope of (1-8) may be expressed as

ri(t) = m(t)r(t) (1-11)




Figure 1. Examples of
the Doppler effect:

(a) receiver motion and
(b) transmitter motion
and reflecting surface.

@ EM wave
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where the equivalent lowpass or equivalent baseband channel response is

N
r(t) =Y ai(t)exp[igi(t)] (1-12)
=1

The fluctuations in this factor cause signal fading at the receiver and in-
crease the bandwidth of the received signal. If the transmitted signal is an
unmodulated tone, then m(t) = 1 and (1-12) represents the complex enve-
lope of the received signal.

The channel response can be decomposed as

r(t) = re(t) + jrs(t) (1-13)
where j = v/—1 and
N N
re(t) =) ai(t) cos[gi(t)] , rs(t) = 3 ai(t)sin[¢i(t)]  (1-14)
=1 =1

If the range of the delay values exceeds 1/ f., then the sensitivity of ¢;(t) to
small variations in the delay 7;(t) makes it plausible to model the phases
¢i(t),i =1,2,... , N, as random variables that are independent of each
other and the {a;(t)} and are uniformly distributed over [0, 27) at a specific
time t. Therefore,

Elre(t)] = E[rs()] =0 (1-15)

If the amplitude factors a;(t),i = 1,2, ... , N, are either identically dis-
tributed or uniformly bounded independent random variables at time ¢,
then according to the central-limit theorem, the probability distributions of
both r.(t) and r,(t) approach Gaussian distributions as N increases. Thus,
if N is sufficiently large, then r(¢) at a specific time is well modeled as a
complex Gaussian random variable. Since the phases are independent and
uniformly distributed, it follows that

Efre(t)rs(t)] =0 (1-16)



E[r2(t)] = E[r2(t)] = 02(2) (1-17)
where we define
1 N
o7(t) = 5 > Ela}(t) (1-18)
i=1

This equation indicates that o2(t) is equal to the sum of the local-mean
powers of the multipath components. Equations (1-15) to (1-17) imply that
r(t) and ry(t) are independent, identically distributed, zero-mean Gaus-
sian random variables.

Let a(t) = |r(t)| denote the envelope, and 8(t) = tan™![ry(t)/r.(t)] the
phase of r(t) at a specific time ¢. Then
r(t) = a(t)e?®) (1-19)

As shown in Appendix A-4, since r.(t) and r5(t) are Gaussian and o?(t) =
r2(t) + r2(t), 6(t) has a uniform distribution over [0, 27), and a(t) has the
Rayleigh probability density function:

r 7‘2
falr) = Sz 55 ) () (1-20)
where the time-dependence has been suppressed for convenience, and
u(r) =1, >0, and u(r) =0, r < 0. From (1-20) or directly from (1-13)
and (1-17), it follows that

Ela®(t)] = 207(t) (1-21)
The substitution of (1-19) and (1-11) into (1-7) gives

sr(t) = Rela(t) m(t) exp(j2n fet + jO(t))]
= a(t) An(t) cos2r ft + dm(t) + 6(2)] (1-22)

where A, (t) is the amplitude and ¢,(t) the phase of m(t). Equations
(1-21) and (1-22) indicate that the instantaneous local-mean power is p; =
o7 (D) A%, (D)-

When a line-of-sight exists between a transmitter and a receiver, one of
the received multipath components may be much stronger than the others.
This strong component is called the specular component and the other unre-
solvable components are called diffuse or scattered components. As a result,
the multiplicative channel response of (1-12) becomes

N
r(t) = ao(t) exp[jgo(t)] + Z a;(t) exp[jgs(t)] (1-23)

i=1

where the summation term is due to the diffuse components, and the first
term is due to the specular component. If N is sufficiently large, then at
time ¢ the summation term is well-approximated by a zero-mean, complex




Gaussian random variable. Thus, 7(t) at a specific time is a complex Gaus-
sian random variable with a nonzero mean equal to the deterministic first
term, and (1-13) implies that

Efre(t)] = ao(t) cos[go()] , Elrs(t)] = ao(t) sinl¢o(t)]  (1-24)

As shown in Appendix A-3, since 7.(t) and r,(t) are Gaussian and o?(t) =
r2(t) + r2(t), the envelope a(t) = |r(¢)| has the Rice probability density
function:

fulr) = Zron { -8 b 1 (%) ) (125)

2 2
o 207 lo g

where Iy( ) is the modified Bessel function of the first kind and order zero,
and the time-dependence is suppressed for convenience. From (1-25) or
directly from (1-18) and (1-23), it follows that the average envelope power
is

Q = E[?(t)] = ad(t) + 202(¢) (1-26)
The type of fading modeled by (1-23) and (1-25) is called Ricean fading. At a
specific time, the Rice factor is defined as

2
_ %
K= 507 (1-27)

which is the ratio of the specular power to the diffuse power. In terms of
and €, the Rice density is

K K r? k(K
fa(r) = 2 ; 1)7‘<3XP{ — K= '(—j;)—l)—}fo< —-(—T;———l—)ZT> u(r) (1-28)

When k£ = 0, Ricean fading is the same as Rayleigh fading. When x = oo,
there is no fading.

A more flexible fading model is created by introducing a new parameter m;
the Nakagami-m probability density function for the envelope «a(t) is

fulr) = I“‘(“ZET) (—g) " eme1 g (- -’gri’) u(r), m> % (1-29)

where the gamma function I'(m) is defined by (A-12). When m = 1, the
Nakagami density becomes the Rayleigh density, and when m — oo,
there is no fading. When m = 1/2, the Nakagami density becomes the
one-sided Gaussian density. A measure of the severity of the fading is
var(a?)/(E[a?])?. Equating this ratio for the Rice and Nakagami densities,
it is found that when m > 1, the Nakagami density closely approximates a
Rice density with

N/
K,:————-m m y le (1_30)
m—vVm2—m



Since the Nakagami-m model essentially incorporates the Rayleigh and
Rice models as special cases and provides for many other possibilities, it
is not surprising that this model often fits well with empirical data. Inte-
grating over (1-29), changing the integration variable, and using (A-12), we
obtain

n_ Dm+2) /1 Q\"/?
E[a"] = T (;1-> (1-31)
Consider a time interval small enough that N(t) = N, v(t) = v, and ¥;(t) =
1; are approximately constants and a;(t) = a; and 7;(t) = 7; are random
variables. Then (1-9) and (1-10) yield

b; (t + 7‘) — ¢ (t) = 27de7' cos ¥; (1-32)

where f; = fov/cis the maximum Doppler shift and 7 is a time shift. The
autocorrelation of a wide-sense-stationary complex process r(t) is defined
as ‘

An(r) = SEl (@)r(t +7) (1-33)

where the asterisk denotes the complex conjugate. The variation of the au-
tocorrelation of the equivalent baseband channel response defined by (1-12)
provides a measure of the changing channel characteristics. To interpret the
meaning of (1-33), we substitute (1-13) and decompose the autocorrelation
as

Re(4,(r)} = s{Blre(t)re(t+ 7]+ Elrs(@rs(t + )]} (1:39)
Im{A4,()} = S{Blr@rs(t+7)] - Bra(relt + )]} (1-35)

Thus, the real part of this autocorrelation is the average of the autocorre-
lations of the real and imaginary parts of r(t); the imaginary part is pro-
portional to the difference between two crosscorrelations of the real and
imaginary parts of r(t). Substituting (1-12) into (1-33), using the indepen-
dence and uniform distribution of each ¢; and the independence of a; and
#;, and then substituting (1-32), we obtain

N
Ar(r) = —;— Z Ela?] exp(j27 f4 7 cos ;) (1-36)

i=1

If all the received multipath components have approximately the same
power and the receive antenna is omnidirectional, then (1-18) implies that
Ela?]~202/N,i=1,2,..., N,and (1-36) becomes

2 N
Ar(r) = 223" exp(j2m fa cos ) (1-37)

t=1




A communication system such as a mobile that receives a signal from an
elevated base station may be surrounded by many scattering objects. An
isotropic scattering model assumes that multipath components of compara-
ble power are reflected from many different scattering objects and hence
arrive from many different directions. For two-dimensional isotropic scat-
tering, N is large, and the {¢;} lie in a plane and have values that are uni-
formly distributed over [0, 27). Therefore, the summation in (1-37) can be
approximated by an integral; that is,

2 2
Ap(7) = g—:; /0 exp(j2n fg 7 cos)da) (1-38)

An evaluation of this integral gives the autocorrelation of the channel response
for two-dimensional isotropic scattering:

An(r) = o2 Jo(2m fy7) (1-39)

where Jy( ) is the Bessel function of the first kind and order zero.

The normalized autocorrelation A,(7)/A,(0), which is a real-valued func-
tion of f47, is plotted in Figure 2. It is observed that its magnitude is less
than 0.3 when f; 7 > 1. This observation leads to the definition of the coher-
ence time or correlation time of the channel as

_ 1
 fa

where f; is the maximum Doppler shift or Doppler spread. The coherence
time is a measure of the time separation between signal samples sufficient
for the samples to be largely decorrelated. If the coherence time is much
longer than the duration of a channel symbol, then the fading is relatively
constant over a symbol and is called slow fading. Conversely, if the coher-
ence time is on the order of the duration of a channel symbol or less, then
the fading is called fast fading.

The power spectral density of a complex process is defined as the Fourier
transform of its autocorrelation. From (1-39) and tabulated Fourier trans-
forms, we obtain the Doppler power spectrum for two-dimensional isotropic
scattering:

T. (1-40)

0.2

— Y ) f |< f
Sr(f)=qm/f2-f2 | ’ (1-41)
0 , otherwise

The normalized Doppler spectrum S,(f)/S,(0), which is plotted in Figure
3 versus f/ fg, is bandlimited by the Doppler spread f; and tends to infinity
as f approaches = f;. The Doppler spectrum is the superposition of contri-
butions from multipath components, each of which experiences a different
Doppler shift upper bounded by f;.
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The received signal power spectrum may be calculated from (1-7), (1-11),
and (1-41). For an unmodulated carrier, m(t) = 1 and the received signal
power spectrum is

Swclf) = 350(f = 1)+ 55:(F + £ (1-42)

In general, when the scattering is not isotropic, the imaginary part of the
autocorrelation A, (7) is nonzero, and the real part decreases much more
slowly and less smoothly with increasing 7 than (1-39). Both the real and
imaginary parts often exhibit minor peaks for time shifts exceeding 1/ f,.
Thus, the coherence time provides only a rough characterization of the
channel behavior.

A received signal from one source can often be decomposed into the sum of
signals reflected from several clusters of scatterers. The equivalent complex-
valued baseband impulse response of the channel h(7; t) is the response at time
t due to an impulse applied 7 seconds earlier. For most practical applica-
tions, the wide-sense stationary, uncorrelated scattering model is reasonably
accurate. In this model, the impulse response can be expressed as

Le(t)

h(rit) = Y milt) 6(r — mi(t)) (1-43)

i=1

where L.(t) is the number of clusters, 7;(t) is the delay associated with the
ith cluster, 6( ) is the Dirac delta function, and r;(t) is a complex, wide-sense
stationary, Gaussian random process with zero mean for Rayleigh fading
and a nonzero mean for Ricean fading. Because of the uncorrelated scatter-
ing that generates each term in (1-43), the process r;(t) is uncorrelated with
7;(t),J # i. Diffuse fading paths can be modeled by replacing one or more
terms in (1-43) by integrals over density functions. Both more general and
more specialized, but much less often used, models have been proposed by
many authors.

1.4 Spatial Diversity and Fading
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To obtain spatial diversity in a fading environment, the antennas in an ar-
ray must be separated enough that there is little correlation between signal
replicas or copies at the antennas. To determine what separation is needed,
consider the reception of a signal at two antennas separated by a distance
D, asillustrated in Figure 4. If the signal arrives as an electromagnetic plane
wave, then the signal copy at antenna 1 relative to antenna 2 is delayed by
D sin6/c, where @ is the arrival angle of the plane wave relative to a line per-
pendicular to the line joining the two antennas. Let ¢4;(t) denote the phase
of the complex envelope of multipath component  at antenna k. Consider a
time interval small enough that ¢;(t) = ¢, N(t) = N, a;(t) = a;, and each
multipath component arrives from a fixed angle. Thus, if multipath com-
ponent ¢ of a narrowband signal arrives as a plane wave at angle v;, then
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Figure 4. Two antennas
receiving plane wave
that results in a signal
copy at each antenna.
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the phase ¢2; of the complex envelope of the component copy at antenna 2
is related to the phase ¢;; at antenna 1 by

D
o2 = 15 + 27F-X sin ; (1-44)

where A = c/f,. is the wavelength of the signal. If the multipath compo-
nent propagates over a distance much larger than the separation between
the two antennas, then it is reasonable to assume that the attenuation q; is
identical at the two antennas. If the range of the delay values exceeds 1/ f.,
then the sensitivity of the phases to small delay variations makes it plau-
sible that for £ = 1, 2 the phases ¢¢;,i = 1,2, ... , N, are well modeled as
independent random variables that are uniformly distributed over [0, 27).
From (1-12), the complex envelope ;;, of the signal copy at antenna ¥ when
the signal is a tone is

N
re =Y a;exp(igri), k=1,2 (1-45)

i=1

The cross-correlation between r; and 75 is defined as
1
Ci2(D) = —2-E[r1‘r2] (1-46)

Substituting (1-45) into (1-46), using the independence of each a; and ¢y;,
the independence of ¢x; and ¢y, ¢ # [, and the uniform distribution of each
¢ri, and then substituting (1-44), we obtain

N
C1(D) = 3 3 Elaf] exp(j2r Dsin /) (147)

i=1

This equation for the cross-correlation as a function of spatial separation
clearly resembles (1-36) for the autocorrelation as a function of time delay.
If all the multipath components have approximately the same power so
that E[o?] ~ 202/N,i=1,2,... , N, then

N
Ca(D) = %Y. exp(j2nDsin /) (148)

i=1

1




Applying the two-dimensional isotropic scattering model, a derivation sim-
ilar to that of (1-39) gives the real-valued crosscorrelation

C12(D) = a2Jo(2nD/N) (1-49)

This model indicates that an antenna separation of D > /2 ensures that
the normalized crosscorrelation C12(D)/C12(0) is less than 0.3. A plot of the
normalized crosscorrelation is obtained from Figure 2 if the abscissa is in-
terpreted as D /). When the scattering is not isotropic or the number of scat-
tering objects producing multipath components is small, then the real and
imaginary parts of the crosscorrelation decrease much more slowing with
D/. For example, Figure 5 shows the real and imaginary parts of the nor-
malized crosscorrelation when the{4);} are a nearly continuous band of an-
gles between 77 /32 and 97 /32 radians so that (1-48) can be approximated
by an integral. Figure 6 depicts the real and imaginary parts of the nor-
malized crosscorrelation when N' = 9 and the {y;} are uniformly spaced
throughout the first two quadrants: ¢; = (i — Dm/8,1=1,2,...,9.In
the example of Figure 5, an antenna separation of at least 5) is necessary to
ensure approximate decorrelation of the signal copies and obtain spatial di-
versity. In the example of Figure 6, not even a separation of 10 is adequate
to ensure approximate decorrelation.

1.5 Frequency-Selective Fading
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Frequency-selective fading occurs because multipath components combine
destructively at some frequencies, but constructively at others. The differ-
ent path delays cause dispersion of a received pulse in time and cause inter-
symbol interference between successive symbols. When a multipath chan-
nel introduces neither time-variations nor Doppler shifts, (1-8) and (1-9)
indicate that the received complex envelope is

Ls
ri(t) =Y a;exp(—j2n for)m(t — 1) (1-50)

i=1

The number of multipath components L, includes only those components
with power that is a significant fraction, perhaps 0.05 or more, of the power
of the dominant component. The multipath delay spread T is defined as
the maximum delay of a significant multipath component relative to the
minimum delay of a component; that is,

Ty =max7; —min7; , 1=1,2,... ,N (1-51)
(2 2

If the duration of a received symbol T} is much larger than T}, then the
multipath components are usually unresolvable, m(t — ;) & m(t — 1), i =
1,2,..., Ls, and hence r;(t) is proportional to m(t — 71 ). Since all frequency
components of the received signal fade nearly simultaneously, this type of
fading is called frequency-nonselective or flat fading and occurs if T, >> Tj.
In contrast, a signal is said to experience frequency-selective fading if T, < Ty
because then the time variation or fading of the spectral components of
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Figure 5. Normalized
crosscorrelation for
multipath components
arriving from band of
angles between 77 /32
and 97 /32 radians: (a)
real part and (b)

imaginary part.
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m(t) may be different. The large delay spread may cause intersymbol inter-
ference, which is accommodated by equalization in the receiver. However,
if the time delays are sufficiently different among the multipath compo-
nents that they are resolvable at the demodulator or matched-filter output,
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Figure 6. Normalized (a)
crosscorrelation for N = a) 1 T T . : . . T ; T

9 multipath components
arriving from uniformly
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then the independently fading components provide diversity that can be
exploited by a rake receiver. This aspect of frequency-selective fading is
analyzed in Section 2.5.
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It is conceptually useful to define the coherence bandwidth as

_1
=7
Let B,, denote the bandwidth of m(t). In general, B,, > 1/T; for practical

modulations so flat fading occurs if B,, << B.. Frequency-selective fading
requires B,, > B..

B. (1-52)

To illustrate frequency-selective fading, consider the reception of a tone at
frequency fo with two multipath components so that m(t) =1 and Ly =2
in (1-50). It then follows that the complex envelope has magnitude

9 1/2
1+ (Z—Q) +2 (_a_g> cos 27 fo Td] (1-53)
1

where Ty = 71 — 7. If another tone at frequency f; is received, then this
equation is valid with f; substituted for fo. Thus, the two complex en-
velopes can differ considerably as fo and f; both range over a spectral band
with bandwidth equal to the coherence bandwidth. If a; = as, then the dif-
ference between the two complex-envelope magnitudes varies from 0 to
2(11.

Ir1(t)] = a1

1.6 Fading Rate and Fade Duration

The fading rate is the rate at which the envelope of a received fading signal
crosses below a specified level. Consider a time interval over which the
fading parameters are constant. For a level r > 0, isotropic scattering, and
Ricean fading, it can be shown that the fading rate is [1]

fr= V2 1) fapexpl—r ~ (s + DAl (20v/R(F T 1)) (1-54)

where & is the Rice factor and
r

= 1-55
P or\/2(k+1) (1-55)

For Rayleigh fading, x = 0 and (1-54) becomes
fo= YT op(—12/20%) (1-56)

Equations (1-54) and (1-56) indicate that the fading rate is proportional to
the Doppler spread f4. Thus, slow fading occurs when the Doppler spread
is small, whereas fast fading occurs when the Doppler spread is large.

Let Ty denote the average envelope fade duration. If the time-varying en-
velope is assumed to be a stationary ergodic process, then the product f, T
is equal to Fy(r), the probability that the envelope is below or equal to the
level r. Thus,

Fu(r)

Tf = fr (1'57)
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If the envelope has the Rice distribution, then integrating (1-28) and using
(1-54), (1-55), (1-57), and (A-15), we obtain

_ 1- (\/ﬂ, 2(k + 1)p)
T 2r(s+ 1) fapexpl—r — (5 + 1)p2llo(2py/n(s + 1))

For Rayleigh fading, (1-56), (1-57), and the integration of (1-20) yields

(1-58)

. exp(r?/202) — 1
T = NI (1-59)

For both Ricean and Rayleigh fading, the fade duration is inversely propor-
tional to fj.
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2. Diversity for Fading Channels

Diversity combiners for fading channels are designed to combine indepen-
dently fading copies of the same signal in different branches. The combin-
ing is done in such a way that the combiner output has a power level that
varies much more slowly than that of a single copy. Although useless in im-
proving communications over the additive-white-Gaussian-noise (AWGN)
channel, diversity improves communications over fading channels because
the diversity gain is large enough to overcome the noncoherent combining
loss. Diversity may be provided by signal redundancy that arises in a num-
ber of different ways. Time diversity is provided by channel coding or by
signal copies that differ in time delay. Frequency diversity may be available
when signal copies using different carrier frequencies experience indepen-
dent or weakly correlated fading. If each signal copy is extracted from the
output of a separate antenna in an antenna array, then the diversity is called
spatial diversity. Polarization diversity may be obtained by using two cross-
polarized antennas at the same site. Although this configuration provides
compactness, it is not as potentially effective as spatial diversity because the
received horizontal component of an electric field is usually much weaker
than the vertical component. '

In the subsequent analysis, spatial diversity is emphasized, but most of
the results pertain to other types of diversity as well. The three most com-
mon types of diversity combining are selective, maximal-ratio, and equal-
gain combining. The last two methods use linear combining with variable
weights behind each antenna. Since they usually must eventually adjust
their weights, maximal-ratio and equal-gain combiners can be viewed as
types of adaptive arrays. They differ from other adaptive arrays in that
they are not designed to cancel interference signals.

2.1 Optimal Array

Consider an antenna array that feeds L branches. Each branch input is
translated to baseband, and then either the baseband signal is applied to a
matched filter and sampled or the sampled complex envelope is extracted
(Appendix B-3). Alternatively, each branch input is translated to an inter-
mediate frequency, and the sampled analytic signal is extracted. The subse-
quent analysis is valid for any of these types of branch processing. It is sim-
plest to assume that the branch outputs are sampled complex envelopes.
The branch outputs provide the inputs to a linear combiner. Let x(I) denote
the discrete-time vector of the L complex-valued combiner inputs, where
the index denotes the sample number. This vector can be decomposed as

x(l) =s(l) + n(l) (2-1)
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where s(I) and n(l) are the discrete-time vectors of the desired signal and
the interference plus thermal noise, respectively. Let W denote the weight
vector of a linear combiner applied to the input vector. The combiner out-
putis

y(l) = Wx(l) = g + yn (2-2)
where T denotes the transpose of a matrix or vector,
ys(l) = WTs(l) (2-3)
is the output component due to the desired signal, and
yn (1) = WTn(l) (2-4)

is the output component due to the interference plus noise. The compo-
nents of both s() and n(l) are modeled as discrete-time jointly wide-sense-
stationary processes. The correlation matrix of the desired signal is defined
as

R, = E [s*()sT ()] (2-5)
and the correlation matrix of the interference plus noise is defined as

Rpn = E [0° ()n? (1) (2-6)
The desired-signal power at the output is

poo = 3B ()] = sW R, W @)

where the superscript H denotes the conjugate transpose. The interference
plus noise power at the output is

1 1
Pn = §E [lyn(l)|2] = §WHR/nnW (2-8)

The signal-to-interference-plus-noise ratio (SINR) at the combiner output
is

H
po= Do = T Reo W (29)
Pn W4R,,,W

The definitions of R;; and R,,,, ensure that these matrices are Hermitian
and nonnegative definite. Consequently, these matrices have complete sets
of orthonormal eigenvectors, and their eigenvalues are real-valued and
nonnegative. The noise power is assumed to be positive. Therefore, R,
is positive definite and has positive eigenvalues. Since R, can be diago-
nalized, it can be expressed as [4]

L
R,, = Z Aiegef! (2-10)
i=1

where ); is an eigenvalue and e; is the associated eigenvector.



To derive the weight vector that maximizes the SINR with no restriction on
R,;, we define the Hermitian matrix

L
A=)V eef (2-11)
i=1

where the positive square root is used. Direct calculations verify that

R,, = A? (2-12)
and the inverse of A is
Lo
Al= Z ———eief{ (2-13)

The matrix A specifies an invertible transformation of W into the vector
V =AW (2-14)
We define the Hermitian matrix
C=A"R,A7! (2-15)

Then (2-9), (2-12), (2-14), and (2-15) indicate that the SINR can be expressed
as

vECcV
PO =TT (2-16)

where || || denotes the Euclidean norm of a vector and || V|2 = VZV. Equa-
tion (2-16) is a Rayleigh quotient [4], which is maximized by V = nu, where
u is the eigenvector of C associated with its largest eigenvalue /.y, and n
is an arbitrary constant. Thus, the maximum value of pg is

Pmax = lmax (2-17)

From (2-14) with V = nu, it follows that the optimal weight vector that maxi-
mizes the SINR is

Wo =nA~lu (2-18)

The purpose of an adaptive-array algorithm is to adjust the weight vector
to converge to the optimal value, which is given by (2-18) when the maxi-
mization of the SINR is the performance criterion.

When the discrete-time dependence of s({) is the same for all its compo-
nents, (2-18) can be made more explicit. Let s(I) denote the discrete-time
sampled complex envelope of the desired signal at a fixed reference point
in space. It is assumed that the desired signal is sufficiently narrowband
that the difference between the maximum and minimum delays is much
less than the reciprocal of the signal bandwidth. Thus, the desired-signal
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copies at all the antennas are nearly aligned in time, and the desired-signal
input vector may be represented as

s(l) = s()So (2-19)
where the steering vector is

So = [a1 exp(j 01) a2 exp(762) ... ar exp(j GL)]T (2-20)

For Rayleigh fading, the phases 6;,7 =1, 2, ... , L, are modeled as random
variables uniformly distributed over [0, 27), and the attenuations «;,7 = 1,
2, ..., L, have Rayleigh distribution functions, as explained in Section 1.3.

Alternatively, (2-20) can serve as a model for a narrowband desired signal
that arrives at an antenna array as a plane wave and does not experience
fading. Let T3, i = 1,2, ... , L, denote the arrival-time delay of the desired
signal at the output of antenna i relative to a fixed reference point in space.
Equations (2-19) and (2-20) are valid with 6, = 2= f.T;,i = 1,2,...,L,
where f. is the carrier frequency of the desired signal. The oy, i = 1, 2,
..., L, depend on the relative antenna patterns and propagation losses. If
they are all equal, then the common value can be subsumed into s(l). It is
convenient to define the origin of a Cartesian coordinate system to coincide
with the fixed reference point. Let (z;, y;) denote the coordinates of antenna
i. If a single plane wave arrives from direction ¢ relative to the normal to
the array, then

0; = 2§fc(wi siny + y; cosy), ¢=1,2,...,L (2-21)

where c is the speed of an electromagnetic wave.

The substitution of (2-19) into (2-5) yields

R.s = 2psS§SE (2-22)
where
1 2
po= 5 Ells()P] (2-23)
After substituting (2-22) into (2-15), it is observed that C may be factored:
C =2p,A"1SSTA! = FFH (2-24)
where
F = +/2p,A7IS} (2-25)

This factorization explicitly shows that C is a rank-one matrix. Therefore,
an eigenvector of C associated with the only nonzero eigenvalue is

u=F = /2p,A"!S} (2-26)
and the nonzero eigenvalue is

Imax = [|F|? (2-27)



Substituting (2-26) into (2-18), using (2-12), and then merging +/2p; into
the arbitrary constant, we obtain the optimal weight vector for a narrowband
desired signal:

Wo = nR;;S5 (2-28)

where 7 is an arbitrary constant. The maximum value of the SINR, obtained
from (2-17), (2-27), (2-25), and (2-12), is

Prax = 2psSqRAS} . (2-29)

2.2 Maximal-Ratio Combining

Suppose that the interference plus noise in an antenna is zero-mean and
uncorrelated with the interference plus noise in any of the other antennas
in the array. Then the correlation matrix Ry, is diagonal. If the ith diagonal
element has the value

20? = Eln; [2] (2-30)

then (2-28) implies that the weight vector that maximizes the SINR is

* * * T
W, =n|-% 5022 SOQN (2-31)
oy 03 oN

Equations (2-29) and (2-20) yield

L
puusx = Y, 7507 (2-32)
=1 ¢

where each term is the SINR at the output of an antenna. Linear combining
that uses W, is called maximal-ratio combining (MRC). It is optimal only if
the interference-plus-noise signals in all the diversity branches are uncorre-
lated. As discussed subsequently, the maximal-ratio combiner can also be
derived as the maximum-likelihood estimator associated with a multivari-
ate Gaussian density function. The critical assumption in the derivation is
that the noise process in each array branch is both Gaussian and indepen-
dent of the noise processes in the other branches.

In most applications, the interference-plus-noise power in each array branch
is approximately equal, and it is assumed that 02 = 02%,i =1,2,... ,L.
this common value is merged with the constant in (2-28) or (2-31), then the
MRC weight vector is

W, =nSh (2-33)

and the corresponding maximum SINR is

L
pusx = 25 Y 0 (2-39)
=1
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Figure 7. Branch k of a
maximal-ratio combiner
with a phase stripper.

Since the weight vector is not a function of the interference parameters,
the combiner attempts no interference cancellation. The interference signals
are ignored while the combiner does coherent combining of the desired
signal. Equations (2-3), (2-33), (2-19), and (2-20) yield the desired part of
the combiner output:

L
ys() = Wis(l) = ns(1) > _ o? (2-35)

i=1

Since y;(1) is proportional to s(1), the MRC equalizes the phases of the sig-
nal copies in the array branches, a process called cophasing. If cophasing can
be done rapidly enough to be practical, then so can coherent demodulation.

Ifeacha;,i=1,2,...,L,is modeled as a random variable with an identical
probability distribution function, then (2-34) implies that

Elpmax) = LE3 Efo]] (2-36)

which indicates a gain in the mean SINR that is proportional to L.

There are several ways to implement cophasing [5]. Unlike most other
cophasing systems, the phase stripper does not require a pilot signal. Figure
7 depicts branch & of a digital version of a maximal-ratio combiner with a
phase stripper. It is assumed that the interference-plus-noise power in each
branch is equal so that only cophasing and amplitude multiplication are
required for the MRC. In the absence of noise, the angle-modulated input
signal is assumed to have the form

ck(l) = axs(l) exp[jOi] = o explid(l) + j6k] (2-37)

where oy, is the amplitude, ¢(1) is the angle modulation carried by all the
signal copies in the diversity branches, and 6y is the undesired phase shift
in branch k, which is assumed to be constant for at least two consecutive
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Decision
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A
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To other
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samples. The signal ¢ (I — 1) is produced by a delay and complex conjuga-
tion. During steady-state operation following an initialization process, the
reference signal is assumed to have the form

cr(l) = expljo(l — 1) + jy] (2-38)

where 9 is a phase angle. The three signals c,(I), cx(l), and cj(I — 1) are
multiplied together to produce

cx1(l) = o explig(l) + j] (2-39)

which as been stripped of the undesired phase shift ;. This signal is com-
bined with similar signals from the other diversity branches that use the
same reference signal. The input to the decision device is

L L
cra(l) =Y g explig(l) + j9] = €¥s(1) Y of (2-40)

k=1 k=1

which indicates that MRC has been obtained by phase equalization, as in
(2-35). After extracting the phase ¢(1) + 9, the decision device produces the
demodulated sequence ¢(I), which is an estimate of ¢(I), by some type of
phase-recovery loop [6]. The device also produces the complex exponential
exp[jo(l) + jy]. After a delay, the complex exponential provides the refer-
ence signal of (2-38).

2.3 Bit Error Probabilities for Coherent Binary Modulations

Suppose that the desired-signal modulation is binary phase-shift keying
(PSK). A transmitted bit is equally likely to be a 0 or a 1 and is represented
by +(t) or —1(t), respectively. Each received signal copy in a diversity
branch experiences independent Rayleigh fading that is constant during
the signal interval. The received signal in branch i is

ri(t) = Re[aye?®ixp(t)e?>™ et 4 ny(t), 0<t<T, i=1,2,...,L (241)

where z = 41 or —1 depending on the transmitted bit, each ¢; is an am-
plitude, each 6; is a phase shift, f. is the carrier frequency, T is the signal
duration, and n;(t) is the noise. It is assumed that either the interference is
absent or, more generally, that the received interference plus noise in each
diversity branch can be modeled as independent, zero-mean, white Gaus-
sian noise with the same two-sided power spectral density Ny/2.

Although MRC maximizes the SINR after linear combining, the theory of
maximum-likelihood detection (cf. Section 2.6) is needed to determine an
optimal decision variable that can be compared to a threshold. The initial
branch processing before sampling could entail extraction of the complex
envelope (Appendix B-3), passband matched-filtering followed by a fre-
quency translation to baseband, or, equivalently, a translation followed by
baseband matched-filtering [6]. Since it is slightly simpler, we assume the
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latter in this analysis. The same results are obtained if one assumes the ex-
traction of the complex envelope and uses the equations of Appendix B-3.

Using 2Re(r) = r+z* and discarding a negligible integral, it is found that af-
ter the translation to baseband, the matched filter in each diversity branch,
which is matched to 1(¢), produces the samples

T
Y = / 2r;(t)e 92 Ity * (t)dt
0

T
= 28a;e%z + / 2n;(t)e Ity (tydt, i=1,2,...,L (2-42)
0

where a factor of “2” has been inserted for analytical convenience, and the
desired-signal energy per bit in the absence of fading and multipath is

- 1 T 2
£=3 /0 () Pat (2-43)

These samples provide sufficient statistics that contain all the relevant in-
formation in the received signal copies in the L diversity branches.

It is assumed that 9(t) has a spectrum confined to |f| < f.. The white
Gaussian noise process n;(t) has autocorrelation

Elu(imi(t+7)] = 526(r) (244

where §(7) is the Dirac delta function. Using 2Re(z) = z + z*, 2Im(z) = 2 —
x*, the spectral limitations of (), (2-43), and (2-44), we find that the noise
term in (2-42) has independent real and imaginary components with the
same variance 2£ No. Therefore, given z, o4, and 6;, the branch likelihood
function or conditional probability density function of y; is

fyilz, o, 0;)

1 ly; — 26 c;ed% |2
= exp | —
IEN, 4EN,

], i=1,2,...,L

(2-45)

Since the branch samples are statistically independent, the log-likelihood
function for the vector y = (y1 y2 ...yr) given the {«;} and the {6;} is

L
Iff(yle, o, 0)] = Y In[f(yile, o, 6;)] (2-46)
i=1

The receiver decides in favor of a 0 or 1 depending on whether z = +1 or
z = —1 gives the larger value of the log-likelihood function. Substituting
(2-45) into (2-46), eliminating irrelevant terms and factors that do not de-
pend on the value of z, we find that the maximumd-likelihood decoder can
base its decision on the single variable

U = iz:;Re <aie—jo"yi)

L L
= 26> o+ b (2-47)
=1 i=1



Figure 8. Maximal-
ratio combiner for PSK
with (a) predetection
combining and

(b) postdetection
combining. Coherent
equal-gain combiner
for PSK omits the
factors {e;}.

where, given the value of 8;, N; is the real-valued, zero-mean, Gaussian
random variable

T
N; =Re [e—ﬂ’f / 2n;(t)e 92 fty* (t)dt (2-48)
0

If welets(l) = [y1 y2 --- yr]” and use (2-33), we obtain U = Re[WLs(l)].
Since taking the real part of WZs(l) serves only to eliminate orthogonal
noise, the decision variable U is produced by baseband MRC. The decision
variable is compared to a threshold equal to zero to determine the bit state.

Since (2-47) is computed in either case, the implementation of the maximum-
likelihood decoder may use either maximal-ratio predetection combining be-
fore the demodulation, as illustrated in Figure 8(a), or postdetection com-
bining following the demodulation, as illustrated in Figure 8(b). Since the
optimal coherent matched-filter or correlation demodulator performs a lin-
ear operation on the {y;}, both predetection and postdetection combining
provide the same decision variable, and hence the same performance.

If the {o;} and {6;} are given, then the decision variable has a Gaussian
distribution with mean
L
E(U)=2£) o} (249)
=1

Since the {n;(t)} and, hence, the {N;} are independent, the variance of U is

L
of =Y of var(N;) (2-50)
=1
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The variance of N; can be evaluated from (2-43), (2-44), and (2-48). It then
follows from (2-50) that

L
op = 26N Y o} (2-51)

i=1

Because of the symmetry, the bit error probability can be determined by as-
suming that z = +1, corresponding to a transmitted 0. A decision error is
made if U < 0. Since the decision variable has a Gaussian conditional distri-
bution and neither E(U) nor o2 depends on the {6;}, a standard derivation
indicates that the conditional bit error probability given the {«;} is

Pya (1) = Q(v/2m) (2-52)
where
e <
_ < 2 _
"= N ; & (2-53)

Qz) = \/—% /z ” exp (—y;) dy = %erfc(%) (2-54)

and erfc( ) is the complementary error function. The bit error probability
is determined by averaging Py (vs) over the distribution of -y,, which de-
pends on the {a;} and embodies the statistics of the fading channel.

Suppose that independent Rayleigh fading occurs so that each of the {;}
is independent with the identical Rayleigh distribution and E[e?] = E[a?].
As shown in Appendix A-4, o? is exponentially distributed. Therefore, +,
in (2-53) is the sum of L independent, identically and exponentially dis-
tributed random variables. From (A-49), it follows that the probability den-
sity function of 4 is

SRS S e )
f(x) = = 1)!7Lx exp ( 7) u(z) (2-55)
where the average signal-to-noise ratio (SNR) per branch is
y = - Blod] (256)

The bit error probability is determined by averaging (2-52) over the density
given by (2-55). Thus,

By(L) = /0 ” Q(x/2_x>mx“1exp (—%) & (257)

Direct calculations verify that since L is an integer,

d 1 exp(—z)

9 (V) = NN (2-58)
d | _, 2 (2/7) 1 _ T
@[ "2 (_/vl)] = T o (‘5) @9)



Applying integration by parts to (2-57), using (2-58), (2-59), and Q(0) =
1/2, we obtain

1 L-1

1 o — i—

This integral can be evaluated in terms of the gamma function, which is
defined in (A-12). A change of variable in (2-60) yields

11 [y & T@+1/2)
Pb(L)—i—'é'\/l_'_’?iz:;ﬁi!(l_i_ﬁ_y)i (2-61)

Since I'(1/2) = +/x, the bit error probability for no diversity or a single

branch is
p=R(1)=3 (1 ~ /1—1'%> (PSK,QPSK)  (2-62)

Since I'(z) = (z — 1)I'(z — 1), it follows that

P(k+1/2) = ;f_{f(?) = ;éffl' (2’“ k__ 1) , k>1 (2-63)

Solving (2-62) to determine ¥ as a function of p and then using this result
and (2-63) in (2-61) gives

L-1 .
Ao =p-a-wY (*7pa-or ey

This expression explicitly shows the change in the bit error probability as
the number of diversity branches increases. Equations (2-62) and (2-64) are
valid for quadriphase-shift keying (QPSK) because the latter can be trans-
mitted as two independent binary PSK waveforms in phase quadrature.

An alternative expression for P,(L), which may be obtained by a far more
complicated calculation entailing the use of the properties of the Gauss hy-
pergeometric function, is [3], [7]

L-1 .
rm =y (71 a-» (2-65)

=0

By using mathematical induction, this equation can be derived from (2-64)
without invoking the hypergeometric function.

From a known identity for the sum of binomial coefficients [8], it follows

that
BET)-C) e

=0

Since 1 —p < 1, (2-65) and (2-66) imply that
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R(L) < (“L‘ l)pL (2-67)

This upper bound becomes tighter as p — 0.If ¥ >> 1 so that p << 1, (2-62)
implies that p ~ 1/4% and (2-67) indicates that the bit error probability
decreases inversely with 4%, thereby demonstrating the large performance
improvement provided by diversity.

The advantage of MRC is critically dependent on the assumption of un-
correlated fading in each diversity branch. If there is complete correlation
so that the {o;} are all equal and the fading occurs simultaneously in all
the diversity branches, then v, = LEa?/N,. Therefore, 7, has a chi-square
distribution with 2 degrees of freedom and probability density function

fi(x) = Lif’y exp <_Li7y) u(z) (2-68)

where 7 is defined by (2-56) and the superscript c denotes correlated fading.
A derivation similar to that of (2-61) yields

1 L7
F{(L) =5 <1 -1/5 +”ny> (PSK, QPSK) (2-69)
When Ly >> 1,
1
P(L) ~ s % , p<<1 (PSK, QPSK) (2-70)

where p is given by (2-62). A comparison of (2-70) with (2-67) shows the
large disparity in performance between a system with completely corre-
lated fading and one with uncorrelated fading.

Plots of the bit error probability for a single branch with no fading, L
branches with independent fading and MRC, and L branches with com-
pletely correlated fading and MRC are shown in Figure 9. Equations (2-52),
(2-62), (2-64), and (2-69) are used in generating the plots. The independent
variable is the average SNR per branch for a bit, which is equal to ¥ for
MRC and is equal to v, = £/Nj for the single branch with no fading. The
average SNR per bit for MRC is L#. The figure demonstrates the advantage
of diversity combining and independent fading.

For multiple frequency-shift keying (MFSK), one of g equal-energy orthog-
onal signals s;(t), s2(t), . .., sq(t), each representing log, g bits, is transmit-
ted. The maximum-likelihood decoder generates g decision variables cor-
responding to the ¢ possible nonbinary symbols. The decoder decides in
favor of the symbol associated with the largest of the decision variables.
Matched filters for the ¢ orthogonal signals are needed in every diversity
branch. Because of the orthogonality, each filter matched to si(t) has a zero
response to 5;(t), | # k, at the sampling time. When symbol  represented



Figure 9. Bit error
probability of PSK for
no fading, completely
correlated fading, and
independent fading.
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by s;(t) is received in the presence of white Gaussian noise, matched-filter
k of branch i produces the sample

. T .,
Yri = 26 ;€% 55y + /0 2n;(t)e 92 et sk (t) dt (2-71)
where5k1=1ifk=land6kl=0ifk #land

T
5=%/ k(@) dt, k=1,2,... g 2-72)
0

It is assumed that each s;(t) has a spectrum confined to |f| < f.. Using
these spectral limitations and (2-44), we find that the real and imaginary
components of the noise term in (2-71) are independent and have the same
variance 26 Np and that the conditional probability density function of y;
given the values of [, a;, and 6; is

f(yki|l7 Qs 01) =

- ed0i 5, |2
e [_ kaz 28(116 6kl| ] (2_73)

47& Ny 4ENy

For coherent MFSK, the {e;} and the {6;} are assumed to be known. Since
the noise in each branch is assumed to be independent, the likelihood func-
tion is the product of qL densities given by (2-73) fork=1,2,...,qand i =
1,2,..., L. Forming the log-likelihood function, observing that 3", 6%, = 1,
and eliminating irrelevant terms and factors that are independent of I, we
find that the maximization of the log-likelihood function is equivalent to
selecting the largest of ¢ decision variables, one for each of s;1(t), s2(t), - - -,
54(t). They are
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L
U= Re(aey;) , 1=1,2,... g (2-74)
i=1

Consider coherent binary frequency-shift keying (FSK). Because of the sym-
metry of the model, P,(L) can be calculated by assuming that s;(t) was
transmitted. With this assumption, the two decision variables become

L L
Up = 2£) o+ Ny (2-75)
=1 i=1
L
Ux = Z a;Ny; (2-76)
i=1

where Ny; and Ny; are independent, real-valued, Gaussian noise variables
given by

o T 3
Nii =Re [6_10"/0 2n;(t)e ™12t} (t) dt] , k=12 (277)

A derivation similar to the one for coherent PSK indicates that (2-64) and
(2-65) are again valid for coherent FSK provided that

p= 1 (1 - —L_) (coherent FSK) (2-78)
2+%

which can also be obtained by observing the presence of two independent
noise variables and, hence, substituting 7/2 in place of 7 in (2-62). Thus, in

a fading environment, PSK retains its usual 3 dB advantage over coherent
FSK.

The preceding analysis for independent Rayleigh fading can be extended
to independent Nakagami fading if the parameter m is a positive integer.
From (1-29) and elementary probability, it follows that the probability den-
sity function of each random variable v; = £a? /Ny is

m

Fe) = ¢ i

m—1 m
_— _— =1,2,... -
m_1)5m z exp( 5 )u(x) , m=12 (2-79)

where 7 is defined by (2-56). As indicated in Appendix A-2, the character-
istic function of «; is
1

Cyi(jv) = T iom (2-80)

If 7, in (2-53) is the sum of L independent, identically-distributed random
variables, then it has the characteristic function

Civ) = .

—_— 2-81
1—jLy)mLl (2-81)



The inverse of this function yields the probability density function

_ 1 mL-1 _ m) _
fy(z) = (mL—l)!(r?/m)mLx exp( 5 u(z), m=1,2,...
(2-82)
The form of this expression is the same as that in (2-55) except that L and

% are replaced by mL and 7/m, respectively. Consequently, the derivation
following (2-55) is valid once the replacements are made, and

mL—1

P(L)=p~(1-2p) ) (mi" 1) lp(1 ~ P (2:83)
=1
where

p= 1L (1 ~J=L=) (PsK QpsK) (2-84)
m+ 5

Y S ) :
p=3 (1 p——— (coherent FSK) (2-85)

These results can be approximately related to Ricean fading by using (1-30).
Figure 10 displays the bit error probability for Nakagami fading with m = 4,
PSK, and L =1, 2, 3, and 4 diversity branches.

24 Equal-Gain Combining

Figure 10. Bit error
probability of PSK for
Nakagami fading with
m=4.
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when a narrowband desired signal experiences fading, instead of (2-31) and
(2-20), the EGC weight vector is

W, = nlexp(—j61) exp(—j62) ... exp(—j6r)]” (2-86)

where 6; is the phase shift of the desired signal in branch i. When MRC
is optimal and the values of the {a;/0?} are unequal, EGC is suboptimal,
but requires much less information about the channel. If the interference
plus noise in each array branch is zero-mean and uncorrelated with the
other branches and E||n;|*] = 20?%,i = 1,2,...,L, then R,, is diagonal,
and (2-9), (2-20), and (2-22) with W = W, give the output SINR

L 2
(Z a,,.) (2-87)
=1

It can be verified by applying the Schwarz inequality for inner products
that this SINR is less than or equal to pyax given by (2-34). Figure 8 pertains
to EGC with predetection and postdetection combining if the factors {a;}
are omitted.

= pS
Po o2

In a Rayleigh-fading environment, each «i;, 2 = 1,2, ... , L, has a Rayleigh
probability distribution function. If the desired signal in each array branch
is uncorrelated with the other branches and has identical average power,
then using (A-36), we obtain

- 1/2
El0?] = El0]], Ela] = {Z E[af]} ,1=1,2,...,L (2-88)

Elosay] = Elas] Elay] = TElod], i # k (2-89)
These equations and (2-87) give
Elpo] = [1+ (- 17| & Blod] (2-90)

which exceeds 7 /4 times E[pmax] given by (2-36) for MRC.

As a specific example in which MRC is suboptimal, assume that both the
desired and interference signals are narrowband, do not experience fading,
and arrive as plane waves. The array antennas are sufficiently close that
the steering vector Sy of the desired signal and the steering vector J of the
interference signal can be represented by

Sy = [e—ﬂﬂ'foﬁ e—itmfors e—jz‘ﬂ’foTL]T (2-91)
3o = I:e“j27"f051 e—i2mfods e_j27"f05L]T (2-92)

The correlation matrix for the interference plus noise is

Rop = 2p, 1+ 2p; 35 37 (2-93)



where p, and p; are the noise and interference powers, respectively, in each
array branch. This equation shows explicitly that the interference in one
branch is correlated with the interference in the other branches. A direct
matrix multiplication using ||Jo||? = L verifies that

_ 1 qJ%JT
L - (yp_ 2200 -94
R, 5o ( Tot1 (2-94)

where g = p;/py is the interference-to-noise ratio in each array branch.
After merging 1/2p, with the constant in (2-28), it is found that the optimal
weight vector is

* L *
Wo=n (so - fg - IJO) (2-95)

where § is the normalized inner product
1
€= 23555 (2-96)

The corresponding maximum SINR, which is calculated by substituting
(2-91), (2-94), and (2-96) into (2-29), is

(2:97)

2
Pmax = L"Ys (1 - |§| Lg)

Lg+1

where v; = ps/p, is the signal-to-noise ratio in each branch. Equations
(2-91), (2-92), and (2-96) indicate that 0 < |{| <l and |¢(| =1if L = 1.
Equation (2-97) indicates that pmax decreases as |¢| increases if L > 2 and is
nearly directly proportional to L if g >> 1.

In this example, since the values of the {«;/0?} are all equal, both MRC
and EGC use the weight vector of (2-86) with §; = —2x f.7;,i = 1,2,... ,L,
which gives W = 7S§. Substituting (2-22), (2-91)—(2-93), and (2-96) into (2-9)
gives the SINR for MRC and EGC:

L~

=T+ EPLg (2-98)

Po
Both ppax and po equal L, the peak value, when ¢ = 0. They both equal
L~,/(L g+ 1) when |¢| = 1, which occurs when both the desired and inter-
ference signals arrive from the same direction or L = 1. Using calculus, it is
found that the maximum value of pmax/po, which occurs when |¢| =1/ V2,
is

2
(/’Lm«) _ o241 oy (2-99)
PO/ max Lg+1

This ratio approaches L g/4 for large values of L g. Thus, an adaptive array
based on the maximization of the SINR has the potential to significantly
outperform MRC or EGC if L g >> 1 under the conditions of this example.
Figure 11 displays pmax/po as a function of |¢| for various values of L g.
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Figure 11. Ratio of the
maximum SINR to the
maximal-ratio-combiner
SINR. -
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When accurate phase estimation is unavailable so that neither cophasing
nor coherent demodulation is possible, then postdetection combining fol-
lowing noncoherent demodulation can provide a significant performance
improvement over a system with no diversity. For FSK or minimum-shift
keying, postdetection combining with a frequency discriminator is illus-
trated in Figure 12. Each intermediate frequency (IF) is sampled, converted
to a discrete-time complex baseband signal, and then demodulated by a
digital frequency discriminator [9]. The square of the magnitude or pos-
sibly the magnitude of the discrete-time complex baseband signal is used
to weight the output of each branch. If the noise power in each branch is
approximately the same and much smaller then the desired-signal power,
then this weighting is a good approximation of the weighting used in MRC,
but it is suboptimal since cophasing is absent.

An alternative is postdetection EGC. However, when the desired-signal
power is very low in a branch, then that branch contributes only noise to
the EGC output. This problem is eliminated if each branch has a threshold
device that blocks the output of that branch if the desired-signal power falls
below the threshold. '

A block diagram of a differential phase-shift keying (DPSK) receiver with
postdetection EGC is depicted in Figure 13. For equally likely binary sym-
bols, the error probability is the same regardless of whether two consec-
utive symbols are the same or different. Assuming that they are the same
and that the fading is constant over two symbols, the EGC decision statistic
is [3]
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Figure 13. Equal-gain
combiner for DPSK
with postdetection
combining.
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U=Re

i (28aiejei + Nu-) (ZSaie_j 6 1 N;;)} (2-100)

=1

where Ny; and No; are independent, complex-valued, Gaussian noise vari-
ables arising from two consecutive symbol intervals. A derivation [3] indi-
cates that if the {«;} are independent but have identical Rayleigh distribu-
tions, then Py(L) is given by (2-64), (2-65), and (2-67) with the single-branch
bit error probability
1

P= 30T (DPSK) (2-101)
where 7 is given by (2-56). Equation (2-101) can be directly derived by ob-
serving that the conditional bit error probability for DPSK with no diver-
sity is  exp(—7s) and then integrating the equation over the density (2-55)
with L = 1. A comparison of (2-101) with (2-78) indicates that DPSK with
EGC and coherent FSK with MRC give nearly the same performance in a
Rayleigh-fading environment if 5 >> 1.

Figure 14 is a block diagram of a classical noncoherent MFSK receiver with
postdetection square-law EGC. Each branch contains filters matched to the
equal-energy orthogonal signals s;(t), s2(t), ..., sq(t). To derive this re-
ceiver from the maximum-likelihood criterion, we assume that the {a;}
and the {6;} in (2-71) are random variables. We expand the argument of
the exponential function in (2-73), assume that 6; is uniformly distributed
over [0, 27), and integrate over the density of ;. The integral may be eval-
uated by expressing y; in polar form, using (A-30), and observing that the
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Figure 14. Equal-gain
combiner for
noncoherent MFSK with
postdetection
combining.
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integral is over one period of a periodic integrand. Thus, we obtain the
conditional density function

1. N 7 [ ilyrildw
4wE Ny 4E Ny No

F(yrill, 05) = ) (2-102)

Assuming that o; has the Rayleigh probability density function given by
(1-20), the density f(yx:|l) may be evaluated by using the identity (A-33).
The likelihood function is the product of ¢L densities for k=1, 2, ..., q,
andi =1, 2, ..., L. Forming the log-likelihood function and eliminating
irrelevant terms that are independent of I, we find that the maximization
of the log-likelihood function is equivalent to selecting the largest of the g
decision variables

L
U= lwl®, 1=1,2,....,q (2-103)

Consider noncoherent binary FSK. Because of the symmetry of the signals,
Py(L) can be calculated by assuming that s; (¢) was transmitted. Given that
s1(t) was transmitted, the two decision variables at the combiner output
are

Up = ) [26ce?% + Ny)?

Mn

im1

'M“

(25% cos; + Nh) + Z (25042 sinf; + Nh) (2-104)

i=1
Z NP =3 (NE) + 5 (~4)* (2-105)
i=1 i=1

where Ny; and Ny; are the independent, complex-valued, zero-mean, Gaus-
sian noise variables defined by



T
Ny = /0 omi(t)e~ st (H)dt | k=12, i=12...,L (2-106)

and N[ and N/, are the real and imaginery parts of Ny;, respectively.
ki ki gmery p P Y

Since each n;(t) in (2-106) is a zero-mean, white Gaussian noise process
with the same two-sided power spectral density Ny/2, (2-44), (2-106), and
the spectral limitations of each s (¢) imply that

E[(NEY ) =E[(NL] =26Ny, k=12, i=1,2,...,L (2-107)

and that N and N}, are uncorrelated, zero-mean, jointly Gaussian ran-
dom variables and, hence, are independent of each other. Similarly, it can
be verified by using the independence of n;(t) and n;(t), ¢ # [, and the or-
thogonality of s;(t) and s,(t) that all 4L random variables in the sets {Nj%}
and {N,} are statistically independent of each other. When independent,
identically distributed, Rayleigh fading occurs in each branch, «; cos 6; and
o; sin §; are zero-mean, independent, Gaussian random variables with the
same variance equal to E[a?]/2 = E[0?]/2,i=1,2, ..., L, as shown in Sec-
tion A-4. Therefore, both U; and U> have central chi-square distributions
with 2L degrees of freedom. From (A-18), the density function of Uy is

- ! L1 gy [~ 2 - -
fu(z) = i 1)!a: exp < 202) u(z), k=1,2 (2-108)
where (2-107) and (2-56) give

02 = E[(NE)?] =28N, (2-109)
0} = E[(2£a;cosb; + NEY?| = 26Ny (1 + 7) (2-110)

Since an erroneous decision is made if Us > Uy,

Ry(L) = /0 == ow (5y) [ / v oo () dy] dr  (@111)

(201)1(L - 1)! (203)1(L - 1)!

Using (2-59) inside the brackets and integrating, we obtain

® o (2 ) S 2oty = e (o)
Py(L) = /0 eXp<—27%)iZO: T eAIE o @12

Changing variables, applying (A-12), and simplifying gives (2-65), where
the bit error probability for L = 11is

p= —1_— (noncoherent FSK) (2-113)

2+%

and ¥ is given by (2-56). Thus, P,(L) is once again given by (2-64). Equa-
tions (2-113) and (2-101) indicate that 3 dB more power is needed for nonco-
herent FSK to provide the same performance as DPSK. As discussed subse-
quently in Section 4.1, the performance of DPSK is approximately equaled
by using minimum-shift keying and the configuration shown in Figure 12.
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Figure 15. Bit error
probability for MRC
with PSK and coherent
FSK and for EGC with
DPSK and noncoherent
FSK.

38

Equation (2-64) is valid for MRC and PSK or coherent FSK and also for EGC
and DPSK or noncoherent FSK. Once the bit error probability in the absence
of diversity combining, p, is determined, the bit error probability for diver-
sity combining in the presence of independent Rayleigh fading, P,(L), can
be calculated from (2-64). A plot of P,(L) versus p for different values of
L is displayed in Figure 15. This figure illustrates the diminishing returns
obtained as L increases. A plot of P,(L) versus 7, the SNR per branch for
one bit, is displayed in Figure 16 for MRC with PSK and EGC with DPSK
and noncoherent FSK. The plot for MRC with coherent FSK is nearly the
same as that for EGC with DPSK. Since (2-67) is valid for all these modu-
lations, we find that P,(L) is asymptotically proportional to 5~ with only
the proportionality constant differing among the modulation types.

For noncoherent g-ary orthogonal signals such as MFSK, the union bound
and the preceding analysis indicates that the symbol error probability is

R < @={p- (- 2p>g (%7 pa-ar}  eus

where
1

2+ (logy q)¥

and the factor log, ¢ accounts for the number of bits included in each non-
binary symbol. Relations (2-114) and (2-115) indicate that for fixed values
of L, Ps(L) decreases slowly as g increases. This result is confirmed by an
exact analysis [3], [7].

p (2-115)
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Figure 16. Bit error
probability for MRC
with PSK and for EGC
with DPSK and
noncoherent FSK.
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2.5 Selection Diversity

A selection-diversity system selects the diversity branch that has the largest
signal-to-noise ratio and forwards the signal in this branch for further proc-
essing. In a fading environment, selection diversity is sensible only if the
selection rate is much faster than the fading rate. If the noise and interfer-
ence levels in all the branches are nearly the same, then the total signal-
plus-noise power in each branch rather than the signal-to-noise ratio can
be measured to enable the selection process, thereby allowing a major sim-
plification. Selection diversity does not provide a performance as good as
maximal-ratio combining or equal-gain combining when the interference
plus noise in each branch is uncorrelated with that in the other branches.
However, selection diversity requires only a single demodulator, and when
noises or interference signals are correlated, then selection diversity may
become more competitive.

If the noise in each diversity branch is zero-mean and E([|n;|?] = 207, then
the SNR in branch i is p; = psa?/o2. If each of the {o;} has a Rayleigh
distribution and 0? = 02,1 =1, 2, ..., L, then the SNR in each branch has
the same expected value

p= 25 Elo] (2-116)
The results of Appendix A-4 for the square of a Rayleigh-distributed ran-

dom variable indicate that each SNR has the exponential probability den-
sity function
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fola) = %exp (—%) () (2-117)

The corresponding probability distribution function is

Fy(z) = [1 — exp (— %)} u(z) (2-118)

The branch with the largest SNR is selected. The probability that the SNR of
the selected branch is less than or equal to z is equal to the probability that
all the branch SNR'’s are simultaneously less than or equal to z. Therefore,
the probability distribution function of the SNR of the selected branch is

Fo(z) = [1—exp< p)] u(z) (2-119)

The corresponding probability density function is

Foolz) = %exp (—%) [1 —exp <—%)] o u(z) (2-120)

The average SNR obtained by selection diversity is calculated by integrat-
ing the SNR over the density given by (2-120). The result is

et = [ froe (5) oo ()]
_ L /0 " e <LZ_1 <L - 1) (-1)%*“) s

=0

- Z( >( Dk | (2-121)

The second equality results from a change of variable and the substitu-
tion of the binomial expansion. The third equality results from a term-by-
term integration using (A-12) and an algebraic simplification. Substituting
(2-116) and using a known series identity [8], we obtain

Bl = 2 Ble) 3 (2-122)

Thus, the average SNR for selection diversity with L > 2 is less than that for
MRC and the EGC, as indicated by (2-36) and (2-90), respectively. Approxi-
mating the summation in (2-122) by an integral, it is observed that the ratio
of the average SNR for MRC to that for selection diversity is approximately
L/InLforL > 2.

Whether preprocessing or postprocessing is used, the performance of a re-
ceiver with selection diversity is the same. Suppose that the modulation



is PSK and optimal coherent demodulation follows the selection process.
From (2-45), it follows that the conditional bit error probability is again
given by the right-hand side of (2-52) with

£
W =y max (o) (2-123)

If the {e;} have identical Rayleigh distribution functions, then a derivation
similar to the one leading to (2-120) indicates that the density function of
Y is given by (2-120) with % in place of 5, where ¥ is defined by (2-56).
Therefore, using the binomial expansion, the bit error probability is

0 = [ () -om (D]

= g (L;’l) (—1)’% /000 Q(V2z) exp [—x (1?)] dzr (2-124)

The last integral can be evaluated in the same manner as the one in (2-57).
After regrouping factors, the result is

L-1
Py(L) = % ; (z f 1) (—1)¢ (1 —~ ;:%i_-—:‘y_ (PSK, QPSK) (2-125)

This equation is valid for QPSK since it can be implemented as two parallel
binary PSK waveforms.

For coherent FSK, the conditional bit error probability is Py(v5) = Q(,/7)-
Therefore, it is found that

L-1
Py(L) = 3 zz:; (z 4 1) (-1) (1 %T2Es (coherent FSK)
(2-126)

Again, 3 dB more power is needed to provide to the same performance as
PSK.

When DPSK is the data modulation, the conditional bit error probability is
exp(—)/2. Thus, selection diversity provides the bit error probability

0 - [ &l en ()] " 0

The beta function is defined as

1
B(z,y) = /0 11—t tdt, 2>0, y>0 (2-128)

If y is a positive integer n, then the substitution of the binomial expansion
of (1 — t)*~! and the evaluation of the resulting integral yields

n—1 i
B(z,n)=>) (” - 1) (=1) , n>1, >0 (2-129)

1 t+2x
i=0 +

41




42

Using t = exp(—z/%) to change the integration variable in (2-127) and then
using (2-128) gives

Py(L) = gB(ﬁ +1,L) (DPSK) (2-130)

For noncoherent MFSK, the classical formula for the conditional symbol
error probability given the {«;} is [3], [8]

11+1 i
Peja () Z(z+1 ( i )eXp(“i:bl) (2-131)

'i—

Therefore, a derivation similar to that of (2-130) yields the symbol error
probability

Py(L) = qz

z-f—l

< . ) B < 14+ — I L> (noncoherent MFSK)
(2-132)
For binary FSK, the bit error probability is

P(L) = éB (:2{ +1, L) (noncoherent FSK) (2-133)

which exhibits the usual 3 dB disadvantage compared with DPSK.
Asymptotic forms of (2-130) and (2-133) may be obtained by substituting

_ I(a)T()
B(a,b) = T s (2-134)

To prove this identity, let y = 2? in the integrand of the gamma function de-
fined in (A-12). Express the product I'(a)T'(b) as a double integral, change to
polar coordinates, integrate over the radius to obtain a result proportional
to I'(a + b), and then change the variable in the remaining integral to obtain
B(a,b)T'(a + b).

For DPSK, the substitution of (2-134) and (2-101) into (2-130) and the use of
FF+L+1)=F+L)F+L-1)...(3+)IF+1) > (F+ 1)ET(F + 1) give

Py(L) < 2L-1p 1 pt (2-135)

For noncoherent FSK, a similar derivation using (2-113) and (2-133) yields
the same upper bound, which is tight when 4 >> L. The upper bound on
P,(L) for DPSK and noncoherent FSK with EGC is given by (2-67). Compar-
ing the latter with (2-135) indicates the disadvantage of selection diversity
relative to EGC when4 >> Land L > 2.

Figure 17 shows P,(L) as a function of the average SNR per branch, assum-
ing selection diversity with PSK, DPSK, and noncoherent FSK. A compar-
ison of Figures 17 and 16 indicates the reduced gain provided by selection
diversity relative to MRC and EGC.



Figure 17. Bit error
probability for selection
diversity with PSK,
DPSK, and noncoherent
FSK.
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A fundamental limitation of selection diversity is made evident by the
plane-wave example in which the signal and interference steering vectors
are given by (2-91) and (2-92). In this example, the SNR’s are equal in all
the diversity branches. Consequently, selection diversity can give no better
performance than no diversity combining or the use of a single branch. In
contrast, (2-98) indicates that EGC can improve the SINR significantly.

A rake receiver provides path diversity by coherently combining resolvable
multipath components that are often present during frequency-selective
fading. Consider a multipath channel with frequency-selective fading slow
enough that its time variations are negligible over a signaling interval.
To harness the energy in all the multipath components, a receiver should
decide which signal was transmitted among M candidates, s1(t), s2(t),

-« » 8M(t), only after processing all the received multipath components of
the signal. Thus, the receiver selects among the M baseband signals or com-
plex envelopes

L
w(t) =) east—m), k=1,2,...,M, 0<t<T+Ty  (2-136)
=1

where T is the duration of the transmitted signal, T is the multipath de-
lay spread, L is the number of multipath components, 7; is the delay of
component ¢, and the channel parameter ¢; is a complex number represent-
ing the attenuation and phase shift of component i. An idealized sketch
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Figure 18. Response of
matched filter to input
with three resolvable

multipath components.

of the output of a baseband matched filter that receives three multipath
components of the signal to which it is matched is shown in Figure 18.
If a signal has bandwidth W, then the duration of the matched-filter re-
sponse to this signal is on the order of 1/W. Multipath components that
produce distinguishable matched-filter output pulses are said to be resolv-
able. Thus, three multipath components are resolvable if their relative de-
lays are greater than 1/W, as depicted in the figure. A necessary condition
for at least two resolvable multipath components is that duration 1/W is
less than the delay spread 7. From (1-52) it follows that W > B, is re-
quired, which implies that frequency-selective fading and resolvable mul-
tipath components are associated with wideband signals. There are at most
|TaW ] + 1 resolvable components, where | 2| denotes the largest integer in
x. As observed in the figure, intersymbol interference at the sampling times
is not significant if T; + 1/W is less than the symbol duration 7.

For the following analysis, it is assumed that the M possible signals are or-
thogonal to each other and that the data symbols are independent of each
other so that the maximume-likelihood receiver makes symbol-by-symbol
decisions [3], [6], [10]. This receiver uses a separate baseband matched fil-
ter or correlator for each possible desired signal including its multipath
components. Thus, if si(t) is the kth symbol waveform, k =1,2,... , M,
then the kth matched filter is matched to the signal v(¢) in (2-136) with
T = T,. Each matched-filter output sampled at ¢t = T + T, provides a de-
cision variable. A derivation similar to that of (2-74) indicates that the kth
decision variable is

Usze

L Ts+Ty
Z ¢ / r(r)sp(T — 7)dT (2-137)
i=1 0

where r(t) is the received signal, including the noise, after translation to
baseband. A receiver implementation based on this equation would re-
quire a separate transversal filter or delay line and a matched filter for each
possible waveform si(t). An alternative form that requires only a single
transversal filter and M matched filters is derived by changing variables in
(2-137) and using the fact that s (¢) is zero outside the interval [0, T;). The
result is

L T,
U, = Re [Z c; / (T + i) sk (T)dT] (2-138)
=1 YO




Figure 19. Rake receiver
for M orthogonal
pulses. MF denotes a
matched filter.

For frequency-selective fading and resolvable multipath components, a sim-
plifying assumption is that each delay is an integer multiple of 1/W. Ac-
cordingly, L is increased to equal the maximum number of resolvable com-
ponents,and weset; = (¢ —1)/W,i=1,2,...,L,and (L— 1)/W = 7y,
where 7,, is the maximum delay. As a result, some of the {c;} may be equal
to zero. The decision variables become

L 8
Ur =Re [Zcf/T r(r+ (@ —1)/W)si(r)dr|, k=1,2,...,M (2-139)
0

i=1

A receiver based on these decision variables, which is called a rake receiver,
is diagrammed in Figure 19. Since r(t) is designated as the output of the
final tap, the sampling occurs at ¢ = T. Each tap output contains at most
one multipath component of r(¢).

The rake receiver requires that the channel parameters {¢;} be known or
estimated. An estimation might be done by applying each tap output to
M parallel matched filters after a one-symbol delay. The previous symbol
decision is used to select one matched-filter output for each tap output.
The L matched-filter outputs are lowpass-filtered to provide estimates of
the channel parameters. The estimates must be updated at a rate exceeding
the fade rate of (1-54) or (1-56).

An alternative configuration is to use a separate transversal filter for each
decision variable and to move the corresponding matched filter to the front,
as shown in Figure 20(a). The matched-filter or correlator output is applied
to L parallel fingers, the outputs of which are recombined and sampled to
produce the decision variable. The number of fingers L;, where L, < L,
is equal to the number the resolvable components that have significant
power. The matched filter produces a number of output pulses in response
to the multipath components, as illustrated in Figure 18. Each finger de-
lays and weights one of these pulses by the appropriate amount so that
all the finger output pulses are aligned in time and can be constructively
combined after weighting, as shown in Figure 20(b). Digital devices can be
used because the sampling immediately follows the matched filtering. The
delay of each significant multipath component may be estimated by using
envelope detectors and threshold devices. Let ¢, denote the time required
to estimate the relative delay of a multipath component, and let v denote

Hi + Ty) 7'1‘7 JVV VIV” 1) ?1 lfz o UTM
Re( ) Re( ) Re( )
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Figure 20. Rake receiver: ()

(a) basic configuration
for generating a
decision variable and
(b) a single finger.
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the relative radial velocity of a receiver relative to a transmitter. Then vt, /¢
is the change in delay that occurs during the estimation procedure, where
c is the speed of an electromagnetic wave. This change must be much less
than the duration of a multipath output pulse shown in Figure 18 if the de-
lay estimate is to be useful. Thus, with v interpreted as the maximum speed
of a mobile in a mobile communications network,

C
te << ;}W (2-140)

is required of the multipath-delay estimation.

Suppose that s;(t) is a direct-sequence signal with chip duration 7, = 1/W.
If the processing gain T,/T, is large, the spreading sequence has a small
autocorrelation when the relative delay is T, or more, and

Ts Ts
/ sk(t+ (6 — 1)/W)se(t)dt << / sk@Pdt , i>2  (2-141)
0 0

When the data modulation is binary antipodal or PSK, only a single symbol
waveform s;(t) and its associated decision variable U; are needed. After
translation to baseband, the received signal is

r(t) = {Re [vl (t)eﬂ’ffct] + n(t)}ze-ﬂ”fct (2-142)

where v, (t) is given by (2-136) and n(t) is zero-mean white Gaussian noise.
Let o; = |¢;| and assume that «; is larger than or comparable to «;, i # 1.
Substituting (2-142) and (2-136) into (2-139) with £ = 1 and then using
(2-141), we again obtain (2-47). Thus, the rake receiver produces MRC, and
the conditional bit error probability given the {o;} is provided by (2-52).



However, for a rake receiver, each of the {¢;} is associated with a different
multipath component, and hence each E|[a;] has a different value in gen-
eral. Therefore, the derivation of P,(L) must be modified.

Equation (2-53) may be expressed as

L

~ £

Yo = Z Yi s W= A o? (2-143)
i=1

If each o; has a Rayleigh distribution then each +; has the exponential prob-
ability density function (Appendix A-4)

fri(x) = %exp (—%) u(z), 1=1,2,...,L (2-144)

k3

where the average SNR for a bit in branch i is
__ ¢ 21
¥ = —FE[af],,1=1,2,...,L (2-145)
NO :

If each multipath component fades independently so that each of the {v;} is
statistically independent, then -, is the sum of independent, exponentially
distributed random variables. The results of Appendix A-5 indicate that the
probability density function of -, is

L
A; T
Fu(@) =) —exp (—:) u(z) (2-146)
i=1 i Vi
where
L ——
I——, L>2
A=l (2-147)
1, L=1

The bit error probability is determined by averaging the conditional bit
error probability P>(v,) = Q(+/27) over the density given by (2-146). A
derivation similar to that leading to (2-61) yields

L
34 (1 S (PSK,QPSK)  (2-148)
=1

P(L) =
»(L) T+ 7

DN =

The number of fingers in an ideal rake receiver equals the number of sig-
nificant resolvable multipath components, which is constantly changing in
a mobile communications receiver. Rather than attempting to implement
all the required fingers that may sometimes be required, a more practical
alternative is to implement a fixed number of fingers independent of the
number of multipath components. Generalized selection diversity entails se-
lecting the L, strongest resolvable components among the L available ones
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Figure 21. Rake receiver
that uses equal-gain
combiner to avoid
channel-parameter
estimation.

and then applying MRC or EGC of these L, components, thereby discard-
ing the L — L. components with the lowest SNRs. Analysis [2] indicates
that diminishing returns are obtained as L. increases, but for a fixed value
of L, the performance improves as L increases.

An increase in the number of resolved components L is potentially ben-
eficial if it is caused by natural changes in the physical environment that
generate additional multipath components. However, an increase in L due
to an increase in the bandwidth W is not always beneficial [11]. Although
new components provide additional diversity and may exhibit the more fa-
vorable Ricean fading rather than Rayleigh fading, the average power per
multipath component decreases because some composite components frag-
ment into more numerous but weaker components. Hence, the estimation
of the channel parameters becomes more difficult, and the fading of some
multipath components may be highly correlated rather than independent.

The estimation of the channel parameters needed in a rake receiver
becomes more difficult as the fading rate increases. When the estimation
errors are large, it may be preferable to use a rake receiver that avoids
channel-parameter estimation by abandoning MRC and using noncoher-
ent postdetection EGC. The form of this rake receiver for binary signals is
depicted in Figure 21. Each tap output of the transversal filter provides an
input to the equal-gain combiner, which may have the form of Figure 13 or
Figure 14.

For two orthogonal signals that satisfy (2-141) and the rake receiver of Fig-
ures 21 and 14, the decision variables are given by (2-104) and (2-105). Since
U, has a central chi-square distribution with 2L degrees of freedom, the
probability density function of U; is given by (2-108) and (2-109). Equation
(2-104) can be expressed as

L
U= [(2ascosts + NF)® + (26 sinb; + AN (2-149)
i=1
Each phase 6; is assumed to be statistically independent and uniformly dis-
tributed over [0, 27). Since each «; has a Rayleigh distribution, «; cos §; and

o L J1l - . . . J 1

W W w
Input 1 Input 2 Input L
A A

Equal-gain combiner

l l

Decision variables




o; sin §; have zero-mean, independent, Gaussian distributions. Therefore,
as indicated in Appendix A-4, each term of U; has an exponential distribu-
tion with mean

m; =4ENY(1 + 7;) (2-150)

where ¥; is defined by (2-145). Since the statistical independence of the {c;}
and {6;} implies the statistical independence of the terms of U;, the proba-
bility density function of U; for distinct values of the {¥;} is given by (A-45)
and (A-46) with N = L. Since an erroneous decision is made if Uy > U3,

o oo L1 _
w-$ 2 [Cen(-5) [ e e

Integrating by parts to eliminate the inner integral, changing the remaining
integration variable, applying (A-12), and simplifying yields the bit error
probability for orthogonal signals and a rake receiver with noncoherent
postdetection EGC:

L N\ L
Py(L) = ZBi 1- (1 + %> ] (orthogonal signals) (2-152)
i=1

2+%
where
3 e S
By={ k5t % B (2-153)
1, L=1

An alternative derivation of (2-152) using the direct-conversion receiver
modeled in Appendix B-3 is given in [12]. Equation (2-152) is more compact
and considerably easier to evaluate than the classical formula of Proakis [3],
which is derived in a different way.

Another way to avoid channel-paraméter estimation is to use DPSK and
the diversity receiver of Figure 13 in Figure 21. The classical analysis [3]
implies that P,(L) is given by (2-152) and (2-153) with #; replaced by 27;.

For dual rake combining with orthogonal signals, (2-152) reduces to

8+ 551 + 5%2 + 37172

B@) = e+

(2-154)

If 45 = 0, then

2+ 3y, S 1

P (2) =
W2 = Gy 235

= Py(1) (2-155)

This result illustrates the performance degradation that results when a rake
combiner uses an input that provides no desired-signal component, which
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may occur when EGC is used rather than MRC. In the absence of a desired-
signal component, this input contributes only noise to the combiner.

If an adaptive array produces a directional beam to reject interference or en-
hance the desired signal, it also reduces the delay spread of the multipath
components of the desired signal because components arriving from angles
outside the beam are greatly attenuated. As a result, the potential benefit of
a rake receiver diminishes. Another procedure is to assign a separate set of
adaptive weights to each significant multipath component. Consequently,
the adaptive array can form separate array patterns, each of which en-
hances a particular multipath component while nulling other components.
The set of enhanced components are then applied to the rake receiver [13].

2.7 Error-Correcting Codes

50

If the channel symbols are interleaved to a depth beyond the coherence
time of the channel, then the symbols fade independently. As a result, an
error-correcting code provides a form of time diversity. Consider an (n, k)
linear block code with soft-decision decoding, where n is the number of
code symbols and k is the number of information symbols. Each possible
codeword is assigned a number called the metric, which is a function of
both the codeword and the demodulator output samples. A soft-decision
decoder selects the codeword with the largest metric. The information bits
are then recovered from this codeword.

Let y denote the n-dimensional vector of noisy output samples y;,7 =
1,2,...,n, produced by a demodulator that receives a sequence of n sym-
bols. Let x; denote the /th codeword vector with symbols z;;,7 = 1,2,... ,n.
Let p(y|x;) denote the likelihood function, which is the conditional probabil-
ity density function of y given that x; was transmitted. Let ¢ denote the
alphabet size of the code symbols, and let k denote the number of informa-
tion symbols per codeword. The maximum-likelihood decoder finds the value
of [, 1 < 1 < g*, for which the likelihood function is largest. If this value is
lo, the decoder decides that codeword lp was transmitted. Any monotoni-
cally increasing function of p(y|x;) can serve as the metric of a maximum-
likelihood decoder. If p(y|x;) is known, the decoder metric is usually chosen
to be a linear function of the logarithm of p(y|x;), which is called the log-
likelihood function. If the demodulator outputs are statistically independent
and a single output corresponds to each code symbol, then the likelihood
function is the product of n conditional probability density functions, and
the log-likelihood function or maximum-likelihood metric for each of the ¢*
possible codewords is

In[f(ylx)] = > _In[f(ules)], 1=1,2,...,¢" (2-156)
i=1

where f(y;|zy;) is the conditional probability density function of y; given
the value of x;;. In the subsequent analysis, it is always assumed that per-



fect symbol interleaving or sufficiently fast fading ensures the statistical
independence of the demodulator outputs so that (2-156) is applicable.

For binary PSK over a fading channel in which the fading is constant over
a symbol interval, the received signal representing symbol i of codeword !
is

Ti(t) = Re[aiejoixm/)(t)eﬂ”fct] + nz(t) , t=1,2,...,n (2-157)

where ¢; is a random variable that includes the effects of the fading, z;; =
+1 when binary symbol i is a 1 and z;; = —1 when binary symbol : is
a 0, and 9(t) is the symbol waveform. The noise process n;(t) is inde-
pendent, zero-mean, white Gaussian noise with autocorrelation given by
(2-44). When codeword ! is received in the presence of white Gaussian
noise, the translation to baseband and the matched-filter or correlator de-
modulator, which is matched to (¢), produces the samples

T, '
Yy = / 2ri(t)e‘12“f°tz/)*(t)dt
0

LT ,
= 255041'6'70"181‘1 +/ 27’Li(7§)€_‘72ﬂfct’¢*(t)dt , 1=12,...,n
0

(2-158)
where T denotes the symbol duration and the symbol energy is
1 [T 2
Eo=5 [ le)Pa (2-159)
0

Since % (t) is the sole basis function for the signal space, these samples pro-
vide sufficient statistics; that is, they contain all the relevant information in
the received signal [3], [6], [10].

The spectrum of ¥(t) is assumed to be confined to |f| < f.. Using this
assumption, (2-159), and (2-44), we find that the Gaussian noise term in
(2-158) has independent real and imaginary components with the same
variance 2€;Ny. Therefore, the conditional probability density function of
¥; given the values of z;, o, and 6; is,

1 yi — 2E 0ue9% ;|2 )
f(yilzy, 0s,0;) = TN P l— [y 42.3;\70 d , 1=1,2,...,n,

1=1,2,...,25 (2-160)

Substituting this equation into (2-156) and then eliminating irrelevant terms
and factors that do not depend on the codeword I, we obtain the maximum-
likelihood metrics for PSK:

n
U(l) = ZRe [yiaie“joixli] , 1=1,2,...,2% (2-161)
=1

which serve as decision variables.
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The error probability of a linear binary block (n, k) code can be derived by
assuming that the all-zero codeword represented by z1; = ~1,i=1,2,...,
n, was transmitted. If codeword !/ has Hamming weight w, then the com-
parison of the metrics U(1) and U () depends only on the w terms in (2-161)
that differ. The probability of an error is deciding between two codewords
is equal to the probability that the U (1) < U(l). Therefore, if each of the {«;}
is independent with the identical Rayleigh distribution and E[o?] = E[a?],
t=1,2,...,n,aderivation similar to the one leading to (2-64) indicates that
the two-codeword error probability is

w—1 .
21 -1 .
P =p-0-2% ("7 )pa-aF e
i=1
where
p=t(1-, )2 (PSK, QPSK) (2-163)
2 1+ 7 !
the average SNR per binary code symbol is
Fe = éE[a’;’] = r—g”E[af] =179, (binary symbols) (2-164)
No No

& is the information-bit energy, r is the code rate, and 4, is the average
SNR per bit. The same equations are valid for both PSK and QPSK because
the latter can be transmitted as two independent binary PSK waveforms in
phase quadrature.

Successive applications of the union bound indicates that the word error
probability for soft-decision decoding of block codes satisfies [3], [10]

Pu< S ABD <@ -DPld) @169
l=d,,

where dy, is the minimum distance between codewords, q is the alphabet
size, and A; is the number of codewords with weight I. For cyclic block
codes, the average Hamming weight of the information symbols in code-
words of weight [ is kI /n [14]. Thus, when an incorrect codeword of weight
l is chosen instead of the all-zero codeword, the information-symbol error
probability is I/n, and an upper bound on the information-symbol error
probability for soft-decision decoding is given by

P <
l

AP(1) (2-166)

1s-
S|~

An incorrectly decoded information symbol is assumed to be equally likely
to be any of the (¢ — 1) other symbols. Among those symbols, a given bit is
incorrect in ¢/2 instances. Therefore, the information-bit error probability
is

9 , -



For g-ary orthogonal symbol waveforms s, (), sa(t), ..., s¢(t), ¢ matched
filters are needed. The observation vector is y = [y1 y2...y,], where each
Yk is an n-dimensional row vector of output samples y;, i = 1,2,... ,n,
from matched-filter k¥, which is matched to s(t). Suppose that symbol
i of codeword [ uses s,(t). Because the symbol waveforms are orthogo-
nal, when codeword [ is received in the presence of white Gaussian noise,
matched-filter k¥ produces the samples

T, ‘
Yhi = 2Es0;€7% 6, + / 2ni(t)e P lsi(t)dt, i=1,2,...,n,
0
k=1,2,....q (2-168)

where 0y, = 1if k = v and 6, = 0 otherwise, and the symbol energy for all
the waveforms is

Ts
£ = %/ sk(@)2dt, k=1,2,...,q (2-169)
0

Since each symbol waveform represents log, g bits, the average SNR per
code symbol is

s = (loga )rp (2-170)
which reduces to (2-164) when ¢ = 2.

If the spectra of the {s;(¢)} are confined to |f| < f., then (2-169) and (2-44)
imply that the real and imaginary components of the Gaussian noise term
in (2-168) are independent and have the same variance 2€,N,. Therefore,
the conditional probability density function of y; given the values of I, o,
and 6; is

1 _ |yk,— - 283aiej9i5k,,|2

(2-171)

The orthogonality of the {s;(¢)}, the independence of the white noise from
symbol to symbol, and (2-44) imply the conditional independence of the
{yri}-

For coherent MFSK, the {;} and the {6;} are assumed to be known, and
the likelihood function is the product of ¢gn densities given by (2-171) for
k=1,2,...,qand i = 1, 2, ..., n. Forming the log-likelihood function
and eliminating irrelevant terms that are independent of /, we obtain the
maximum-likelihood metrics for coherent MFSK:

Ul)=) Re I:aie_joiWi], 1=1,2,...,¢" (2-172)

i=1
where V; = y,; is the sampled output of the filter matched to s, (¢), the
signal representing symbol ; of codeword I.

For a linear block code, the error probabilities may be calculated by assum-
ing that the all-zero codeword denoted by I = 1 was transmitted. The com-
parison of the metrics U(1) and U(l), I # 1, depends only on the w terms
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that differ, where w is the weight of codeword I. The two-codeword error
probability is equal to the probability that U(1) < U(l). For coherent MFSK
and independent, identically distributed Rayleigh fading of each codeword
symbol, a derivation similar to the one leading to (2-162) indicates that the
two-codeword error probability is again given by P2(w) provided that

p== (1 - s ) (coherent MFSK) (2-173)
2+7s

where 7¥; is given by (2-170). Upper bounds on the word and symbol er-
ror probabilities for soft-decision decoding are again given by (2-165) and
(2-166). A comparison of (2-163) and (2-173) indicates that for large values
of 4s and the same block code, PSK and QPSK have a 3 dB advantage over
coherent binary FSK in a fading environment.

As in Section 2.3, the preceding analysis can be extended to Nakagami fad-
ing if the parameter m is a positive integer. It is found that the preceding
equations for the error probabilities remain valid except that w in (2-162) is
replaced by mw and p is given by (2-84) or (2-85) with ¥ = r7,.

When fast fading makes it impossible to obtain accurate estimates of the
{ai} and {6}, noncoherent MFSK is a suitable modulation. Expanding the
argument of the exponential function in (2-171), assuming that 6; is uni-
formly distributed over [0, 27), expressing yy; in polar form, observing that
the integral over 6; is over one period of the integrand, and using the iden-
tity (A-30), we obtain the conditional probability density function of y;
given [ and o;:

F(yrill, 05) =

lykil? + 4€2a26;, o |Yki |0k
- -174
P [ 4, N, | =5, (-174)

Assuming that each a; is statistically independent and has the same
Rayleigh probability density function given by (1-20), f(y;|l) can be eval-
uated by using the identity (A-33). Calculating the log-likelihood func-
tion and eliminating irrelevant terms and factors, we obtain the maximum-
likelihood metrics for noncoherent MFSK:

n
U)=> R, 1=12...,¢ (2-175)

i=1

where Ry; = |y,;| denotes the envelope produced by the filter matched to
the transmitted signal for symbol ¢ of codeword .

Assuming that the all-zero codeword was transmitted, a derivation similar
to the one preceding (2-113) again verifies (2-162), (2-165), and (2-166) with

P (noncoherent MFSK) (2-176)
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where #; is given by (2-170). A comparison of (2-163) and (2-176) indicates
that for large values of 7, and the same block code, PSK and QPSK have



an approximate 6 dB advantage over noncoherent binary FSK in a fading

environment. Thus, the fading accentuates the advantage that exists for the
AWGN channel.

A comparison of (2-64) with (2-162) and the first term on the right-hand
side of (2-166) indicates that a binary block code with maximum-likelihood
decoding provides an equivalent diversity equal to d,, if Py, = P, is low
enough that the first term in (2-166) dominates and d,,, A4, /n is sufficiently
small.

For hard-decision decoding, the symbol error probability is determined by
setting P, = p, where p is given by (2-163) for coherent PSK, (2-173) for
coherent MFSK, (2-176) for noncoherent MFSK, or (2-101) for DPSK. The
word error probability is upper bounded by [3], [6], [10]

n

< Y (7)Ra-ry @177)

i=t+41

where ¢ is the number of symbol errors that a bounded-distance decoder
can correct. For tightly packed codes that have few decoding failures [14],
the information-bit error probability is

dm n
NPOR S i”l "\ pirg _ n—i n—1 i1 _ n—i
RbNQ(q‘l)l-Z n(i)PS(l P,) +.Z (z__1>Ps(1 P,) ]
i=t+1 'L=dm+1
(2-178)

For loosely packed codes, (2-178) provides an approximate upper bound
on Pib-

Figure 22 illustrates P;, for an extended Golay (24,12) code with L =1 and
MRC with L =1, 4, 5, and 6 diversity branches. A Rayleigh fading channel
and binary PSK are assumed. The extended Golay (24,12) code has 12 infor-
mation bits, r =1/2, d, = 8, and ¢ = 3. The numbers of codeword weights
in (2-162) are Ag = 759, A12 = 2576, A16 = 759, A24 = 1, and Al = 0, otherwise.
The MRC plots assume that a single bit is transmitted. The SNR per code
symbol ;s = 7/2, where 7 is the average SNR per bit and branch. The figure
" indicates the benefits of coding particularly when the desired Py, is low. At
Py, = 1073, the (24,12) code with hard decisions provides on 11 dB advan-
tage over uncoded PSK; with soft decisions, the advantage becomes 16 dB.
The advantage of soft-decision decoding relative to hard-decision decoding
increases to more than 10 dB at Py, = 1077, a vast gain over the approxi-
mately 2 dB advantage of soft-decision decoding for the AWGN channel.
At Py, = 1079, the (24,12) code with soft decisions outperforms MRC with
L =5 and is nearing the performance of MRC with L = 6. However, since
Ag,, = Ag =759, the equivalent diversity will not reach L = 8 even for very
low P;;. For noncoherent binary FSK, all the curves in the figure are shifted
approximately 6 dB to the right when P, < 1073,

Since the soft-decision decoding of long block codes is usually impractical,
convolutional codes are more likely to give a good performance over a fad-
ing channel. The metrics are basically the same as they are for block codes
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Figure 22.
Information-bit error
probability for extended
Golay (24,12) code with
soft and hard decisions,
coherent PSK
modulation, and
Rayleigh fading,
maximal-ratio
combining with L. =1, 4,
5, and 6.
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with the same modulation, but they are evaluated over path segments that
diverge from the correct path through the trellis and then merge with it sub-
sequently. The linearity of binary convolutional codes ensures that all-zero
path can be assumed to be the correct one when calculating the decoding
error probability. Let | denote the Hamming distance of an incorrect path
from the correct all-zero path. If perfect symbol interleaving is used, then
the probability of error in the pairwise comparison of two paths with an
unmerged segment is P,(l), which is given by (2-162). The probability of an
information-bit error in soft-decision decoding is upper bounded by [10]

Pp < (2-179)

N

B(1)Px(1)

LIRS

l

Il
Q

f

where B(l) is the number of information-bit errors over all paths with un-
merged segments at Hamming distance /, k is the number of information
bits per trellis branch, and dy is the minimum free distance, which is the
minimum Hamming distance between any two convolutional codewords.
This upper bound approaches By, Py(ds)/k as Py — 0 so the equivalent
diversity is dy if P;, and B(dy)/k are small.

In general, dy increases with the constraint length of the convolutional
code. However, if each encoder output bit is repeated n, times, then the
minimum distance of the convolutional code increases to n,d; without a
change in the constraint length, but at the cost of a bandwidth expansion
by the factor 7,. The information-bit error probability has the upper bound
given by



Figure 23.
Information-bit error
probability for Rayleigh
fading, coherent PSK,
and binary
convolutional codes
with various values of
(K,r)and n,.

1 O
Py<y lzdj B()Ps(ny) (2-180)
=af

Figure 23 illustrates P;, as a function of 7, for the Rayleigh-fading chan-
nel and binary convolutional codes with different values of the constraint
length K, the code rate r, and the number of repetitions n,. Equations
(2-180) and (2-162) with k = 1 are used, and the {B(l)} are taken from the
listings for seven terms in [15]. The figure indicates that an increase in the
constraint length provides a much greater performance improvement for
the Rayleigh-fading channel than the increase does for the AWGN channel
[16]. For a fixed constraint length, the rate-1/4 codes give a better perform-
ance than the rate-1/2 codes with n, = 2, which require the same bandwidth
but are less complex to implement. The latter two codes require twice the
bandwidth of the rate-1/2 code with no repetitions.

The issues are similar for trellis-coded modulation [3], [6], [10], which pro-
vides a coding gain without a bandwidth expansion. However, if paral-
lel state transitions occur in the trellis, then dy = 1, which implies that the
code provides no diversity protection against fading. Thus, for fading com-
munications, a conventional trellis code with distinct transitions from each
state to all other states must be selected. Since Rayleigh fading causes large
amplitude variations, multiphase PSK is usually a better choice than multi-
level quadrature amplitude modulation (QAM) for the symbol modulation.
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=
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However, the optimum trellis decoder uses coherent detection and requires
an estimate of the channel attenuation.

Whether a block, convolutional, or trellis code is used, the results of this
section indicate that the minimum Hamming distance rather than the min-
imum Euclidean distance is the critical parameter in designing an effective
code for the Rayleigh fading channel.

Turbo codes or serial concatenated codes with iterative decoding based on
the maximum a posteriori criterion can provide excellent performance. How-
ever, the system must be able to accommodate considerable decoding delay
and computational complexity. Even without iterative decoding, a serial
concatenated code with an outer Reed-Solomon code and an inner binary
convolutional code [3], [10] can be effective against Rayleigh fading. In the
worst case, each output bit error of the inner decoder causes a separate
symbol error at the input to the Reed-Solomon decoder. Therefore, the in-
put symbol error probability Ps; is upper bounded by m times the bit error
probability at the inner-decoder output, where m = log, q is the number of
bits in a Reed-Solomon code symbol. Inequality (2-179) implies that

NgE

Pa< 7 Y BOR() (2-181)

l

I
Q

f

Assuming that symbol deinterleaving ensures independent symbol errors
at the Reed-Solomon decoder input, an upper bound on P, is determined
from (2-178) with P;; substituted in place of P;. The concatenated code has
a code rate

T =T7iTo (2-182)

where r; is the inner-code rate and rg is the outer-code rate. For coherent
PSK modulation with soft-decision decoding, P»(1) is given by (2-162), p is
given by (2-163), and #; is given by (2-164) and (2-182).

Figure 24 depicts examples of the upper bound on P, as a function 7,
for Rayleigh fading, coherent PSK, soft decisions, an inner binary convo-
lutional code with K =7, r; =1/2, and k = 1, and various Reed-Solomon
(n, k) outer codes. The required bandwidth is B, /r, where B, is the un-
coded PSK bandwidth. Thus, the codes of the figure require a bandwidth
less than 3B,,.

2.8 Space-Time Coding
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Multiple antennas at a transmitter can be used to provide transmit diversity,
which is analogous to the spatial diversity provided by multiple antennas
at a receiver, but there are two principal differences. One difference is that
arriving signals must somehow be separated at each receiving antenna and
then combined appropriately. Another difference is that the total transmis-
sion power must be divided among the diversity signals. Signal separation



Figure 24.
Information-bit error
probability for Rayleigh
fading, coherent PSK,
soft decisions, and
concatenated codes
comprising an inner
binary convolutional
code with K =7 and r;
=1/2, and various
Reed-Solomon (n, k)
outer codes.
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may be facilitated by using multiple delayed versions of a symbol, feedfor-
ward or training information to enable channel estimation, selection diver-
sity with feedback from the receiver to the transmitter, orthogonal channel
coding of the signals, or other methods.

A much more powerful approach to improving system performance is to
use both multiple transmit and multiple receive antennas in a multiple-
input, multiple-output configuration. A dramatic increase in the data rate or
system capacity is possible by using space-time codes, which are codes that
introduce both temporal and spatial diversity into signals transmitted from
different antennas [17]. Space-time codes with multiple transmit antennas,
which have been specified in third-generation cellular standards, provide
a favorable tradeoff between power consumption and spectral efficiency.
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3. Direct-Sequence Code-Division Multiple Access

Multiple access is the ability of many users to communicate with each other
while sharing a common transmission medium. Wireless multiple-access
communications are possible if the transmitted signals are orthogonal or
separable in some sense. Signals may be separated in time (time-division
multiple access or TDMA), frequency (frequency-division multiple access or
FDMA), or code (code-division multiple access or CDMA). CDMA is real-
ized by using spread-spectrum modulation while transmitting signals from
multiple users in the same frequency band at the same time. All signals use
the entire allocated spectrum. Information theory indicates that in an iso-
lated cell, CDMA systems achieve the same spectral efficiency as TDMA
or FDMA systems only if optimal multiuser detection is used. However,
even with single-user detection, CDMA is advantageous for cellular net-
works because it eliminates the need for frequency and timeslot coordi-
nation among cells and allows carrier-frequency reuse in adjacent cells.
Frequency planning is vastly simplified. A major CDMA advantage ex-
ists in networks accommodating voice communications. A voice-activity
detector activates the transmitter only when the user is talking. Since typ-
ically fewer than 40% of the users are talking at any given time, the num-
ber of telephone users can be increased while maintaining a specified aver-
age interference power. Another major CDMA advantage is the ease with
which it can be combined with multibeamed antenna arrays that are ei-
ther adaptive or have fixed patterns covering cell sectors. There is no prac-
tical means of reassigning time slots in TDMA systems or frequencies in
FDMA systems to increase capacity by exploiting intermittent voice signals
or multibeamed arrays. Reassignments to accommodate variable data rate
are almost always impractical in FDMA or TDMA systems. These general
advantages of CDMA, combined with the resistance of spread-spectrum
signals to jamming, interception, and multipath interference, make CDMA
the most attractive choice for most mobile communications

The two principal types of spread-spectrum CDMA are direct-sequence
CDMA and frequency-hopping CDMA. In direct-sequence CDMA, pulses
with a large bandwidth relative to the symbol rate can be generated
by using a chip waveform that is modulated by a spreading sequence.
In frequency-hopping CDMA, the carrier frequency of a transmission is
changed periodically.

3.1 Direct-Sequence System with Coherent PSK

A received direct-sequence signal with PSK data modulation can be repre-
sented by

s(t) = V25m(t)p(t) cos 2r fot 3-1)
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Figure 25. Basic
elements of receiver for
direct-sequence signal
with coherent PSK.

where S is the average power, m(t) is the data modulation, p(t) is the
spreading waveform, and fj is the carrier frequency. The data modulation
is a sequence of nonoverlapping rectangular pulses, each of which has an
amplitude equal to +1 or —1. Each pulse of m(t) represents a data symbol
and has a duration of 7. The spreading waveform has the form

o ¢]

p(t)= Y pap(t—iTe) (3-2)

1=—00

where p; is equal to +1 or -1 and represents one chip of a pseudonoise
sequence {p;}. The chip waveform ¢(t) has duration T, that is shorter than
T. Itis convenient, and entails no loss of generality, to normalize the energy
content of the chip waveform according to

1 [T
— Y(t)dt =1 (3-3)
T Jo

Because the transitions of a data symbol and the chips coincide on both
sides of a symbol, the processing gain, defined as

GTC

(3-4)

is an integer equal to the number of chips in a symbol interval.

In the presence of white Gaussian noise, the optimum demodulator for
the detection of a single symbol is the correlator shown in Figure 25. This
correlator is optimal only if the interference is white Gaussian noise, but
is a reasonable approach against other types of interference. An equiva-
lent matched-filter demodulator combines the sampled outputs of a chip
matched filter with a stored pseudonoise sequence. However, the matched-
filter implementation is not practical for a long sequence that extends over
many data symbols

In the subsequent analysis, perfect phase, sequence, and symbol synchro-
nization are assumed. The effects of the initial wideband filtering are as-
sumed to be negligible. The total received signalis

r(t) = s(t) + i(t) + n(t) (3-5
Output
) ri(® T, symbols

/ Dec1§1on R
0 device

2 cos gt
Spreading
Syl.lc waveform
device generator
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where i(t) is the interference, and n(t) denotes the zero-mean white Gaus-
sian noise. Assuming that synchronization has been established, the input
sample applied to the decision device at the end of a data-symbol interval
defined as [0,T%] is

V= /Ts 2r(t)p(t) cos 2 fot dt (3-6)
0

In the evaluation of this equation, it is assumed that fo >> 1/T} so that the
integral over a double-frequency term is negligible. The preceding equa-
tions and the fact that m(t) is constant over the integration interval yield
the decision variable

T, G-1
V= x@?/ m(t) Y Pt — iTe)dt + Vi + Vo
0

=0
= V25T, + Vi + V3 (3-7)
where
Ts
Vi = / 24 (£)p(t) cos 27 fot dt (3-8)
0
T
Vo= / 2n(t)p(t) cos 27 fot dt (3-9)
0

The factor p(t) in i(t)p(t) ensures that the interference energy is spread over
a wide band.

Suppose that m(t) = +1 represents the logic symbol 1 and m(t) = —1 rep-
resents the logic symbol 0. The decision device produces the symbol 1 if
V > 0 and the symbol 0 if V' < 0. An error occurs if V < 0 when m(t) = +1
or if V' > 0 when m(t) = -1. The probability that V = 0 is zero.

The white Gaussian noise has autocorrelation
Ra(r) = 525t~ 7) (3-10)

where Ny/2 is the two-sided noise power spectral density. A straightfor-
ward calculation using (3-9) and (3-10) and assuming that fo >> 1/T,
yields

var(Va) = NoT (3-11)

Suppose that at a particular receiver, a multiple-access interference signal
has the form

i(t) = V2Im,(t)q(t) cos(2m fot + ¢) (3-12)

where my(t) is the data modulation, ¢(t) is the spreading waveform, I is
the received power, and fj is the same for all systems in a CDMA network.



Equation (3-8) implies that the resulting interference term at the input of
the decision device has the form

Vi = V2T cos /0 " ra(Dap() dt (3-13)

where a double-frequency term is neglected and p(t) is the spreading wave-
form of the desired signal. Suppose that the communication signals are syn-
chronous so that data-symbol transitions of p(t) and ¢(t) are aligned at the
receiver. Then my(t) is constant over [0,T]. If all the spreading sequences
have a common period equal to Ts, the common data-symbol duration,
then V; is proportional to the cross-correlation between ¢(t) and p(t), which
is defined as

Ts
O =7 /0 dOp(t)dt (3-14)

If both p(t) and ¢(t) have the same form given by (3-2) and have the same
chip waveform, then (3-14), (3-3), and (3-4) yield

G
1 A-D
Coa =5 1:=lei‘h’ == (3-15)

where both p; and g¢; are equal to either +1 or —1, A denotes the number of
terms with p;¢; = +1, and D denotes the number of terms with p;q; = —1.
Each level of p; or ¢; represents a binary digit a; or b;, respectively, where
a; = (p; +1)/2 and b; = (¢; + 1)/2. Therefore, A equals the number of
agreements in the corresponding digits of the sequences {a;} and {b;}, and
D equals the number of disagreements in the corresponding digits. The
sequences are orthogonal if Cp, = 0. If the sequences are orthogonal, then V;
=0 and the multiple-access interference i(t) is suppressed at the receiver. A
large number of multiple-access interference signals can be suppressed in a
network if each such signal has its data-symbol transitions aligned and the
spreading sequences are mutually orthogonal.

Two sequences of digits, each of length two, are orthogonal if each sequence
is described by one of the rows of the 2 x 2 matrix

H, = [ 0 0] (3-16)
0 1

because A = D = 1. A set of 2" sequences, each of length 27, is obtained by

using the rows of the matrix

H, — {H"“l If"‘l] L n=2,3,... (3-17)
H, 1 Hy,

where H,,_; is the complement of H,,_,, obtained by replacing each 1 and 0
by 0 and 1, respectively, and Hj is defined by (3-16). Any pair of rows in H,,
differ in exactly 2"~! columns, thereby ensuring orthogonality of the cor-
responding sequences. The 2" x 2" matrix H,,, which is called a Hadamard
matrix, can be used to generate all the spreading sequences needed for syn-
chronous direct-sequence communications.




3.2 Sequences with Small Cross-Correlations

Figure 26. Gold
sequence generator.

When the symbol transitions of asynchronous multiple-access signals at a
receiver are not simultaneous, usually because of changing path-length dif-
ferences among the various communication links, the receiver perform-
ance depends on the cross-correlations of spreading sequences that are
shifted relative to each other. Sets of periodic sequences with small cross-
correlations are desirable to limit the effect of multiple-access interference.
Maximal-length sequences [10], [18] which have the longest periods of se-
quences generated by a linear feedback shift register of fixed length, are
often inadequate.

One set of periodic sequences with small cross-correlations consists of the
Gold sequences, which may be generated by the modulo-2 addition of cer-
tain pairs of maximal-length sequences called preferred pairs [19]. One form
of a Gold sequence generator is shown in Figure 26. If each maximal-length
sequence generator has m stages, different Gold sequences in a set or code
are generated by selecting the initial state of one maximal-length sequence
generator and then shifting the initial state of the other generator. Since
any shift from 0 to 2™ — 2 results in a different Gold sequence, 2™~ 1 dif-
ferent Gold sequences can be produced by the system of Figure 26. Gold
sequences identical to maximal-length sequences are produced by setting
the state of one of the maximal-length sequence generators to zero. Alto-
gether, there are 2™ + 1 different Gold sequences, each with a period of
2™— 1, in the set.

The periodic cross-correlation function between periodic sequences {p;} and
{g;} with the same length G is defined as

G
1
Opg(k) = 5 D_pidivk, k=1,2,...,G~1 (3-18)
=1

The periodic cross-correlation function between any two Gold sequences
in a set with period G = 2™— 1 can only take the values —t(m)/G, —1/G, or
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[t(m)— 2]/G, where
(m+1)/2 is odd
H(m) = 2 +1, miso (3-19)
2m+2)/2 1 1 | mis even

Aside from its peak value of unity, an autocorrelation function also takes
only these values. The peak magnitude of the periodic cross-correlation
function between any two Gold sequences is

6, = @ (3-20)

which is often much smaller than what is possible with maximal sequences.

A set of 2™/2 Kasami sequences with period 2™— 1 can be generated from a
maximal-length sequence if m is even [19]. The periodic cross-correlation
function between any two Kasami sequences with period G = 2™ — 1 can
only take the values —s(m)/G, —1/G, or [s(m)— 2]/G, where

s(m) =22 4+ 1 (3-21)

The peak magnitude of the periodic cross-correlation function between any
two Kasami sequences is

s(m) 2m/241
6= = (3-22)

The Kasami sequences are optimal in the sense that 6, has the minimum
value for any set of sequences of the same size and period.

As an example, let m = 11. It can be shown [18] that there are 176 maximal
sequences of period 2!! — 1 = 2047. The peak cross-correlation for the set
is 6, = 0.14. A much larger set of 2! + 1 = 2049 Gold sequences of period
2047 has peak cross-correlation given by (3-19), which yields 6, = 0.03. If m
= 10, there are 60 maximal sequences, 1025 Gold sequences, and 32 Kasami
sequences with period 1023. The peak cross-correlations are 0.37, 0.06, and
0.03, respectively.

If all the spreading sequences in a network of asynchronous CDMA sys-
tems have a common period equal to data-symbol duration, then by the
proper selection of the sequences and their relative phases, one can obtain
a system performance better than that theoretically attainable with ran-
dom sequences. However, the number of suitable sequences is too small
for many applications, and long sequences that extend over many channel
symbols provide more system security.

3.3 Direct-Sequence Systems with PSK and Random Sequences

It is natural and analytically desirable to model a long spreading sequence
as a random binary sequence. The random-binary-sequence model does
not seem to obscure important exploitable characteristics of long sequences
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and is a reasonable approximation even for short sequences in networks
with asynchronous communications. A random binary sequence consists
of statistically independent symbols, each of which takes the value +1 with
probability £ or the value —1 with probability 3. Thus, E[p;] = E[p(t)] =
0. It then follows from (3-7) to (3-9) that E[Vi] = E[V3] = 0, and the mean
value of the decision variable is

E[V] = +V2S T, (3-23)

in the direct-sequence system with coherent PSK. Substituting (3-2) into
(3-8), we obtain

G-1
V'l = pr]u (3-24)
=0
where
(v+1)/T.
Jy = / 2i(t)y(t — vT,) cos 2w fot dt (3-25)
VT,

Consider a network of direct-sequence systems, each of which uses a ran-
dom spreading sequence. A suitable model for multiple-access interference
is given by

K
i(t) = Z 2I; qi(t — 7;) cos(2m fot + ;) (3-26)

1=1

where I; is the average power at the receiver due to interference signal i, K
is the number of interfering spread-spectrum signals, ¢;(t) is the spreading
waveform of signal i, 7; is the relative delay of signal 4, and ¢; is the phase
angle of signal 7 including the effect of carrier time delay. Each spreading
waveform has the form

at) = D gt —jTo) (3-27)

j=—00

where the chip waveforms are assumed to be identical throughout the net-
work and each {g;;} is a sequence modeled as a random binary sequence
that is independent of {p,}. Since the data modulation in an interference
signal is modeled as a random binary sequence, it can be subsumed into
{g:;} with no loss of generality. The model for g;(¢) implies that only time
delays modulo-T, are significant and, thus, we can assume that0 < 7; < T,
without loss of generality.

Substituting (3-26) and (3-27) into (3-25), using the time-limited character
of ¥(t), and neglecting the double-frequency term, we obtain

K vIc+T;
J, = Z v/ 2I; cos ¢; {Qi,u—l / Pt —vI )Yt — (v — 1)T, — 1)dt
=1 Vie
(v+1)T,
+qiv / Yt —vTe)Y(t — vT. — 7;)dt (3-28)
VTc+7'i



We define the partial autocorrelation for the chip waveform as

Ry(s) = /0 Tt + Ts - s)dt, 0<s<T, (3-29)

Substitution into (3-28) and appropriate changes of variables in the inte-
grals yield

K
Jy =Y \/2I; cos ¢i[gi -1 Ry(73) + g Ry (Te — 73)] (3-30)

i=1
It is assumed in this section that K and the {I;} are constants.

For rectangular pulses in the spreading waveform,

1,0<t<T,
Y(t) = _ (3-31)
0 , otherwise.

Consequently,
Ry(s) =s, rectangular pulse (3-32)
For sinusoidal pulses in the spreading waveform,
V2sin(—=t) , 0<t<T
Y(t) = <Tc ) ‘ (3-33)
0 , otherwise.

Substituting this equation into (3-29), using a trigonometric identity, and
performing routine integrations, we obtain

Ry(s) = % sin (%s) — scos <-T7T—s), sinusoidal pulse (3-34)
c c

Since both J,, and J,.;1 contain the same random variable, ¢;,, it does not
appear at first that the terms in (3-24) are statistically independent even
when ¢ = (é1,62,...,¢) and 7 = (r1,7,...,7) are given. Thus, the
following lemma is needed [20].

Lemma. Suppose that {;} and {;} are statistically independent, random
binary sequences. Let = and y denote arbitrary constants. Then o;3;z and
o; By are statistically independent random variables when j # k.

Proof. Let P(i8jx = a, a; B,y = b) denote the joint probability that o; Bjxz =
a and o;8ry = b where |a| = |z| and |b| = |y|. From the theorem of total
probability, it follows that

P(a;fBjr = a,a; By = b)
= P(azﬁ]x =a,;By =b,a; = 1) + P(a’tﬁj$ =a,0;5y = b,a; = —1)
= P(Bjz = a, fry = b,os = 1) + P(Bjz = —a, By = —b,a; = —1)
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From the independence of {c;} and {;} and the fact that they are random
binary sequences, we obtain the further simplification for j # k, x # 0, and
y#0:

P(oifjx = a,a;8ky = b)
= P(Bjz = a)P(Bry = b)P(c; = 1) + P(Bjx = —a)P(Bry = —b)P(a; = —1)

1 b 1 b
=2 2)r(=3) +ar (o) e ()

Since B; equals +1 or —1 with equal probability, P(8; = a/x) = P(8; =
—a/z) and thus

P(a;fjz =a,0;8,y = b) = P(ﬂj = %)P(ﬂk = 2)
P(Bjz = a)P(Bry = b)

A similar calculation gives

P(a;Bjx = a)P(;fry = b) = P(B;x = a)P(Bry = b)
Therefore,

P(o;Bjx = a,;Bky = b) = P(osfz = a)P(0;8ky = b)

which satisfies the definition of statistical independence of c; 8z and ; Bxy.
The same relation is trivial to establish forz =0ory =0.0

A direct application of the lemma indicates that when ¢ and + are given,
the terms in (3-24) are statistically independent. Since p2 = 1, the conditional
variance is

G-1
var(V1) = Y var(J,) (3-35)
v=0

The independence of the K spreading sequences, the independence of suc-
cessive terms in each random binary sequence, and (3-30) imply that the
conditional variance of J, is independent of v and, therefore,

K
var(V1) = 3 2GI; cos® ;[ RY,(1:) + R3(T. — 7)) (3-36)

i=1

Since the terms of V; in (3-24) are independent, zero-mean random vari-
ables that are uniformly bounded and var(V;) — oo as G — oo, the central
limit theorem [21] implies that V; /4/var(V1) converges in distribution to a
Gaussian random variable with mean 0 and variance 1. Thus, when ¢ and
7 are given, the conditional distribution of V; is approximately Gaussian
when G is large. Since V, has a Gaussian distribution and is independent
of V3, (3-7) implies that V' has an approximate Gaussian distribution with
mean given by (3-23), and var(V') = var(Vy) + var(V2).



Under the Gaussian approximation, a straightforward derivation using the
Gaussian distribution of the decision statistic V indicates that the condi-
tional symbol error probability given ¢ and 7 is

non =l 7ot ) o7

where E; = ST is the energy per symbol in m(t), and the equivalent noise
power spectral density is defined as

K
Noe(¢,7)=No+ 2-;; cos® ¢i[R3 (7:) + R (Te — 7)) (3-38)
i=1 "¢

For rectangular pulses, this equation simplifies to

T2

[4

LI , 2
Noe($,7) = No+ ) | %Ts cos” ¢ (1 —22 + 21) (3-39)
. [~

i=1

which shows explicitly how the interference power I; is reduced by the
processing gain G. Numerical evaluations [20] give strong evidence that the
error in (3-37) due to the Gaussian approximation is negligible if G > 50.

To determine the symbol error probability at the output of the decision de-
vice, we calculate the expected value of P,(¢, ) over the distributions of
¢ and 7. For an asynchronous network, it is assumed that the time delays
are independent and uniformly distributed over [0,7;) and that the phase
angles 0;,i =1, 2, ..., K, are uniformly distributed over [0,27). Therefore,
the symbol error probability is

K
9 /2 w/2 pTe Te
Ps_(ﬂ_Tc) /0 /0 /0 [ P@mdgdr (40

where the fact that cos? ¢; takes all its possible values over [0,7/2) has
been used to shorten the integration intervals. Because of the absence of
sequence parameters, the amount of computation required for (3-40) is
much less than the amount required to compute P; when the spreading
sequence is short. However, the computational requirements of (3-40) are
large enough that it is highly desirable to find an accurate approximation
that entails less computation.

The conditional symbol error probability given ¢ is defined as

P(¢) = (Ti)K / L / “ B¢, 7)ar (3-41)

A closed-form approximation to P,(¢) greatly simplifies the computation
of P;, which reduces to

P = (3)K / " / " P@)de (3-42)

s
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To approximate P,(¢), we first obtain upper and lower bounds on it.

For either rectangular or sinusoidal pulses, elementary calculus establishes
that

Ri(m) + R3(T. — 1) < T2 (3-43)

Using (3-43) successively in (3-38), (3-37), and (3-41), and performing the
trivial integrations that result, we obtain

P(#) < Q( %@) (3-44)
where
K
NOu((»b) = No + Z 2gTs cos® éi (3-45)

i=1

If g( ) is a convex function over an interval containing the range of a random
variable X, then Jensen’s inequality (Appendix C) states that

9(E[X]) < E[g(X)] (3-46)

provided that E[X] exists. To apply (3-46), the successive integrals in (3-41)
are interpreted as the evaluation of expected values. For the best results,
we set

X = R} () + R5(T. — ). (3-47)

Since 7; is uniformly distributed over [0, T¢), straightforward calculations
give

1 [T
BIX] = /0 (R2(73) + R3(T, — 7:)\dr; = hT? (348)
where
2
3 rectangular pulse
h= (349)
l+ i sinusoidal pul
3t5.3> u pulse.
The function (3-37) has the form
() =Q {/— (3-50)
9\ = a-+ by

where a > 0 and b > 0. Calculating the second derivative of g(y) with
respect to y, we find that g(y) is a convex functionif 0 < a + by < % From



(3-38), (3-43), and the fact that cos? ¢; < 1, we obtain a sufficient condition
for convexity:

3
ESZ§

(3-51)

K I
No + Z 2-G-Ts
i=1

Application of Jensen’s inequality successively to each component of 7 in
(3-41) yields

Py(¢) > Q( No(@) ¢)> (3-52)
where
K I
Noi() = No+ > _ 2h 5T cos® g (3-53)

i=1

If Ny is negligible, then (3-53) and (3-45) give Ny;/No, = h. Thus, a good
approximation is provided by

2E,
Py(¢) ~ Q( Nood (3-54)
where
K
Noa(®) =No+ 2\/7%1; cos® ¢; (3-55)
=1

 If Ny is negligible, then No,/Noo = Noo/No; = 1/+/h. Therefore, in terms
of the value of E; needed to ensure a given P;(¢), the error in using ap-
proximation (3-54) instead of (3-41) is bounded by 10log,,(1/v/R) in deci-
bels, which equals 0.88 dB for rectangular pulses and 1.16 dB for sinusoidal
pulses. In practice, the error is expected to be only a few tenths of a deci-
bel because Ny # 0 and P, coincides with neither the upper nor the lower
bound.

As an example, suppose that rectangular pulses are used, E;/Np = 15 dB,
and K = 1. Figure 27 illustrates four different evaluations of P; as a func-
tion of GE,/IT, = GS/I, the despread signal-to-interference ratio, which is
the signal-to-interference ratio after taking into account the beneficial re-
sults from the despreading in the receiver. The accurate approximation is
computed from (3-37) and (3-40), the upper bound from (3-44) and (3-42),
the lower bound from (3-52) and (3-42), and the simple approximation from
(3-54) and (3-42). The figure shows that the accurate approximation moves
from the lower bound toward the simple approximation as the symbol er-
ror probability decreases. For P, = 105, the simple approximation is less
than 0.3 dB in error relative to the accurate approximation.

Figure 28 compares the symbol error probabilities for K =1 and K = 2,
rectangular pulses and E;/N, = 15 dB. The simple approximation is used
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for P;, and the abscissa shows GS/I where I is the interference power of
each interfering signal. The figure shows that P, increases with K, but the
shiftin P; is less than 3 dB because the interference signals tend to partially
cancel each other.

Figure 27. Symbol error 100

probability of ' ' ' ' ' ' |
direct-sequence system

with PSK in presence of 10! | —— accurate approx. i

single multiple-access
interference signal and
E;/No =15dB.

- - - simple approx.

Symbol error probability

10"6 I 1 1 | 1 1 N 1
2 4 6 8 10 12 14
Despread signal-to-interference ratio, dB
Figure 28. Symbol error 10°
probability of ' ' [ ' ' ' '
direct-sequence system
with PSK in presence of )
multiple-access 10 E
interference signal and
E;/No =15dB. >
= 1072 two signals 4
£
£,
I~ 10_3 E E
;
'6‘ .
2 . 4 one signal
a 107 ¢
n
1075}
10_6 1 I L 1 L

2 4 6 8 10 12 14
Despread signal-to-interference ratio, dB
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The preceding bounding methods can be extended to the components of ¢
in Py(¢) by observing that cos? ¢; < 1 and setting X = cos? ¢; during the
successive applications of Jensen’s inequality, which is applicable if (3-51)
is satisfied. After applying (3-42), we obtain

2F, 2E;
<P, < 3-56
Q( No ) - Q( Noy ) (3-56)

where
I
Noi = Ny + haTs (3-57)
Now = No+ 2%:@ (3-58)
K

L => I (3-59)

An approximation is provided by

2E,
For@ (\/No +V2hLT,/G ) (3-60)

If P is specified, then the error in the required E,/I; caused by using (3-60)
instead of (3-40) is bounded by 10 logi01/2/k in decibels. Thus, the error
is bounded by 2.39 dB for rectangular pulses and 2.66 dB for sinusoidal
pulses.

The lower bound in (3-56) gives the same result as that often called the stan-
dard Gaussian approximation, in which V; in (3-24) is assumed to be approx-
imately Gaussian, each ¢; in (3-30) is assumed to be uniformly distributed
over [0, 27), and each 7; is assumed to be uniformly distributed over [0, T).
This approximation, gives an optimistic result for P, that can be as much as
4.77 dB in error for rectangular pulses according to (3-56). The substantial
improvement in accuracy provided by (3-54) and (3-42) is due to the appli-
cation of the Gaussian approximation only after conditioning V; on given
values of ¢ and 7.

Figure 29 illustrates the symbol error probability for K = 1 as a function
of GS/I for the standard Gaussian approximation of (3-56), the rough ap-
proximation of (3-60), and the upper and lower bounds given by (3-44),
(3-52), and (3-42). The large error in the standard Gaussian approxima-
tion is evident. Although the rough approximation is reasonably accurate
if P, < 102 in this example, it is increasingly less accurate as K increases.

For synchronous networks, (3-37) and (3-38) can be simplified because the
{7} are all zero. For either rectangular or sinusoidal pulses, we obtain

Py(¢) = Q( Nii;) ) (3-61)
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Figure 29. Symbol error
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where
K o
Noe(#) = No+ ) 2éTs cos” ¢ (3-62)
i=1

A comparison with (3-44) and (3-45) indicates that P, for a synchronous
network equals or exceeds P, for a similar asynchronous network when
random spreading sequences are used. This phenomenon is due to the in-
creased bandwidth of a despread asynchronous interference signal, which
allows increased filtering in the receiver.

3.4 Quadriphase Direct-Sequence Systems with Random Sequences
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A general quaternary direct-sequence signal can be represented by
s(t) = V'Smy (t)py(¢) cos 2 fot + VSma(t — to)pa(t — to) sin 2 fot (3-63)

where two spreading waveforms, p;(t) and po(t), and two data signals,
m; (t) and my(t), are used with two quadrature carriers, and ¢, is the rel-
ative delay between the in-phase and quadrature components of the sig-
nal. For a quadriphase direct-sequence system, which uses quadriphase-shift
keying (QPSK), to = 0. For a direct-sequence system with offset QPSK or
minimum-shift keying (MSK)), |to| = T¢/2. For offset QPSK, the chip wave-
forms are rectangular; for MSK, they are sinusoidal. The use of MSK limits
the spectral sidelobes of the direct-sequence signal, which may interfere
with other signals.



Let T, denote the duration of the data symbols before the generation of
(3-63), and let Ty; = 2T denote the duration of the transmitted channel
symbols of m;(t) and my(t). Let T, denote the common chip duration of
p1(t) and po(2). It is assumed that the synchronization is perfect in the re-
ceiver, which is shown in Figure 30. Consequently, if the received signal is
given by (3-5), then the sampled output of the upper integrator at the end
of a symbol interval is given by

V=2+VS8Tu+Vi+Vs (3-64)
where
Tsl
i = / 2i(t)p1 () cos 2m fot dt (3-65)
0
Tsl
V= / on(t)pr(2) cos 2m fot dt (3-66)
0

The term representing crosstalk,

Ts1
Vi = /0 VSma(t — to)pa(t — to)py (¢) sin dn fot dt (3-67)

is negligible if f, >> 1/T, so that the sinusoid in (3-67) varies much more
rapidly than the product of the spreading waveforms. Similarly, the output
of the lower integrator at the end of a channel-symbol interval is

U==2VSTy+ U1+, (3-68)
where
to+Ts1 - A
U, = / 2i(t)p2(t — to) sin 27 fot dt (3-69)
to
i to-+Ts1
Uy = / o ()pa(t — to) sin 27 fot dt (3-70)
to
Figure 30. Receiver for
direct-sequence signal / ., Decision
with classical device
quaternary modulation

(delay = 0 for QPSK and

delay = T, /2 for OQPSK Received Parallel- out,f::s
and MSK); SWG = sgl | toserial |y
spreading waveform converter

generator. r

/ Decision

device
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An analysis similar to the preceding one for a direct-sequence system with
PSK indicates that the probability of an error is the same for both inputs
of the parallel-to-serial converter and, hence, for each binary symbol of the
data output. Of the available desired-signal power S, half is in each of the
two components. Since T;; = 27, the energy per channel symbol is Es =
ST, the same as for a direct-sequence system with PSK, and

E[V] = E[U] = +V58Ty, = +2VST, (3-71)

Consider a network of classical quadriphase direct-sequence systems with
to = 0, each of which uses a pair of independent, random spreading se-
quences. A suitable model for multiple-access interference is

Z[\/— qui(t — 7;) cos(2m fot + ¢;) + \/_qgl(t 3) sin(27 fot + ;)]
(3-72)

where ¢1;(t) and ¢2;(t) both have the form of (3-27) and incorporate the data
modulation. A straightforward calculation using (3-65) indicates that V; is
given by (3-24) with G = T,; /T, and

K
= Z \/I_i{COS ®ilquip—1Ry () + quip Ry (T, — 7))
i=1
— sin ¢;[q2; -1 Ry (i) + @i Ry (Te — )]} (3-73)

The statistical independence of the two sequences, the lemma of Section 3.3
and analogous results for U; yield

K
var(V1) = var(U) = Z Zfl Ii[R?/,('ri) + be(Tc - 7)) (3-74)
=1 ¢

A derivation similar to the one leading to (3-11) gives
var(Va) = var(Us) = NoTq (3-75)

Since all variances are independent of ¢, the Gaussian approximation yields
a P,(¢, T) that is independent of ¢. Therefore,

( ) / ’ / : (\/; )dr (3-76)

K .
Noe(T) = No + Z %[Ri(‘l‘z) + sz,(Tc - 71)] (3-77)
i=1"°

where

In another version of the quaternary direct-sequence system, the same data
symbols are carried by the in-phase and quadrature components, which
implies that the received direct-sequence signal has the form given by (3-63)



Figure 31. Receiver for
direct-sequence signal
with balanced
quaternary modulation
(delay = 0 for QPSK and
delay = T, /2 for OQPSK
and MSK); SWG =
spreading waveform
generator.

with my(t) = mqo(t) = m(t). Thus, although the spreading is done by
quadrature carriers, the data modulation may be regarded as binary PSK.
A receiver for this balanced quaternary system is shown in Figure 31. The
synchronization system, which is assumed to operate perfectly in the sub-
sequent analysis, is not shown for simplicity. If fo >> 1/T,, the crosstalk
terms similar to (3-67) are negligible, and the input to the decision device is

V=42VST,+ Vi+Va+ Ui+ Us (3-78)

where Ty; = T is the duration of both a data symbol and a channel sym-
bol. If p1 (t) and p2(t) can be approximated by independent random binary
sequences, then V4, V5, U;, and U, are zero-mean uncorrelated random vari-
ables. Therefore, the variance of V is equal to the sum of the variances of
these four random variables, and

E[V] = +2V/ST, (3-79)

An analysis similar to that for classical quadriphase signals yields (3-76)
again. Thus, the classical and balanced quadriphase systems perform equally
well against multiple-access interference.

Using the bounding and approximation methods previously developed,
we find that the symbol error probability of (3-76) satisfies

2F, 2FE;
<P, < 3-80
Q( Nm)_ S_Q( N0u> (3-80)
where
I
Noi = Ny + hETs (3-81)
I
Now = No+ éTs (3-82)

and the total interference power I; is defined by (3-59). The convexity re-
quired to derive the lower bound is valid if

(3-83)
Received Output
signal Decision | symbols
>

device




An approximation that limits the error in the required E, /I, for a specified
P, to0 10 log,o(1/V/R) is

2F
B0 (No + VhLT,/G ) 89

This approximation introduces errors bounded by 0.88 dB and 1.16 dB for
rectangular and sinusoidal pulses, respectively, which are much less than
the maximum errors for (3-60). In (3-80) and (3-84), only the total inter-
ference power is relevant, not how it is distributed among the individual
interference signals.

For synchronous networks with either rectangular or sinusoidal pulses, we
set the {7;) equal to zero in (3-77) and obtain

2E;
i :Q<m> o)

Since this equation coincides with the upper bound in (3-80), we conclude
that asynchronous networks accommodate more multiple-access interfer-
ence than similar synchronous networks using quadriphase direct-sequence
signals with random spreading sequences.

To compare asynchronous quadriphase direct-sequence systems with asyn-
chronous systems using PSK, we find a lower bound on P; for direct-
sequence systems with PSK. Substituting (3-37) into (3-40) and applying
Jensen’s inequality successively to the integrations over ¢;,i=1,2, ..., K,
we find that a lower bound on P, is given by the right-hand side of (3-76) if
(3-83) is satisfied. This result implies that asynchronous quadriphase direct-
sequence systems are more resistant to multiple-access interference than
asynchronous direct-sequence systems with PSK.

3.5 Cellular Networks and Power Control
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In a cellular network, a geographic region is partitioned into cells, as illus-
trated in Figure 32. A base station that includes a transmitter and receiver
is located at the center of each cell. Ideally, the cells have equal hexagonal
areas. Each mobile (user or subscriber) in the network transmits omnidirec-
tionally and communicates with the base station from which it receives the
largest average power. Typically, most of the mobiles in a cell communicate
with the base station at the center of the cell, and only a few communicate
with more distant ones. The base stations act as switching centers for the
mobiles and communicate among themselves by wirelines in most applica-
tions. Cellular networks with direct-sequence CDMA allow universal fre-
quency reuse in that the same carrier frequency and spectral band is shared
by all the cells. Distinctions among the direct-sequence signals are possible
because each signal is assigned a unique spreading sequence.



Figure 32. Geometry of
cellular network with
base station at center of
each hexagon. Two
concentric tiers of cells
surrounding a central
cell are shown.

Cells may be divided into sectors by using several directional sector anten-
nas or arrays at the base stations. Only mobiles in the directions covered by
a sector antenna can cause multiple-access interference on the reverse link or
uplink from a mobile to its associated sector antenna. Only a sector antenna
serving a cell sector oriented toward a mobile can cause multiple-access
interference on the forward link or downlink from the mobile’s associated
sector antenna to the mobile. Thus, the numbers of interfering signals on
both the uplink and the downlink are reduced approximately by a factor
equal to the number of sectors.

The principal difficulty of direct-sequence CDMA is called the near-far prob-
lem. If all mobiles transmit at the same power level, then the received
power at a base station is higher for transmitters near the receiving an-
tenna. There is a near-far problem because transmitters that are far from
the receiving antenna may be at a substantial power disadvantage, and the
spread-spectrum processing gain may not be enough to allow satisfactory
reception of their signals. A similar problem may also result from large
differences in received power levels due to differences in the shadowing
experienced by signals traversing different paths or due to independent
fading.

In cellular communication networks, the near-far problem is critical only
on the uplink because on the downlink, the base station transmits orthog-
onal signals synchronously to each mobile associated with it. For cellular
networks, the usual solution to the near-far problem of uplinks is power con-
trol, whereby all mobiles regulate their power levels. By this means, power
control potentially ensures that the power arriving at a common receiving
antenna is almost the same for all transmitters. Since solving the near-far
problem is essential to the viability of a direct-sequence CDMA network,
the accuracy of the power control is a crucial issue.

In networks with peer-to-peer communications, there is no cellular or hierar-
chical structure. Communications between two mobiles are either direct or
are relayed by other mobiles. Since there is no feasible method of power
control to prevent the near-far problem, direct-sequence CDMA systems
are not as attractive an option as frequency-hopping CDMA systems in
these networks.
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An open-loop method of power control in a cellular network causes a mo-
bile to adjust its transmitted power to be inversely proportional to the re-
ceived power of a pilot signal transmitted by the base station. An open-loop
method is used to initiate power control, but its subsequent effectiveness
requires that the propagation losses on the forward and reverse links be
nearly the same. Whether they are or not depends on the duplexing method
used to allow simultaneous or nearly simultaneous transmissions on both
links. Frequency-division duplexing assigns different frequencies to an up-
link and its corresponding downlink. Time-division duplexing assigns closely
spaced but distinct time slots to the two links. When frequency-division du-
plexing is used, as in the IS-95 and Global System for Mobile (GSM) stand-
ards, the frequency separation is generally wide enough that the channel
transfer functions of the uplink and downlink are different. This lack of link
reciprocity implies that power measurements over the downlink do not pro-
vide reliable information for subsequent uplink transmissions. When time-
division duplexing is used, the received local-mean power levels for the
uplink and the downlink will usually be nearly equal when the transmitted
powers are the same, but the Rayleigh fading may subvert link reciprocity.
For these reasons, a closed-loop method of power control, which is more
flexible than an open-loop method, is desirable. A closed-loop method re-
quires the base station to transmit power-control information to each mo-
bile based on the power level received from the mobile or the signal-to-
interference power ratio.

When closed-loop power control is used, each base station attempts to ei-
ther directly or indirectly track the received power of a desired signal from
a mobile and dynamically transmit a power-control signal [22], [23]. The
effect of increasing the carrier frequency or the mobile speeds is to increase
the fading rate. As the fading rate increases, the tracking ability and, hence,
the power-control accuracy decline. This problem is often dismissed by in-
voking the putative tradeoff between the power control and the bit or sym-
bol interleaving [22], [23]. It is asserted that the large fade durations during
slow fading enable effective power control, whereas the imperfect power
control in the presence of fast fading is compensated by the increased time
diversity provided by the interleaving and channel coding. However, this
argument ignores both the potential severity of the near-far problem and
the limits of compensation as the fading rate increases. If the power con-
trol breaks down completely, then close interfering mobiles can cause fre-
quent error bursts of duration long enough to overwhelm the ability of
the deinterleaver to disperse the errors so that the decoder can eliminate
them. Thus, some degree of power control must be maintained as the ve-
hicle speeds or the carrier frequency increases. The degree required when
the interleaving is perfect is quantified subsequently.

The following performance analysis of the uplink [24] begins with the
derivation of the intercell interference factor, which is the ratio of the in-
tercell interference power to the intracell interference power. The intercell
interference arrives from mobiles associated with different base stations than
the one receiving a desired signal. The intracell interference arrives from mo-



biles that are associated with the same base station receiving a desired sig-
nal. The performance is evaluated using two different criteria: the SINR
and the bit error rate. The SINR criterion has the advantage that it simpli-
fies the analysis and does not require specification of the data modulation
or channel coding. The bit-error-rate criterion has the advantage that the
impact of the channel coding can be calculated. For both criteria, the fad-
ing is flat and no explicit diversity or rake combining is assumed. Since the
interference signals arrive asynchronously, they cannot be suppressed by
using orthogonal spreading sequences.

3.6 Intercell Interference of Uplink

To account for the fading and instantaneous power control in a mathemat-
ically tractable way, the shadowing and fading factors in (1-4) are approx-
imated [1] by a lognormal random variable. Thus, at a particular time it is
assumed that the equivalent shadowing factor n implicitly defined by

107/10 = 108/1042 (3-86)

has a probability density function that is approximately Gaussian. This
equation, the statistical independence of £ and «, and the fact that E[¢] =0
imply that

Bin) = 3Elinal 67)
4
E?] = EIE%)+ > El(na) (3-88)
where b = (In 10)/10. To evaluate these equations when a has the Nakagami-

m density function of (1-29), we express the expectations as integrals, change
the integration variables, and apply the identities [8]

/00 ' e Pingdr = E(VL)['J,ZJ(U) —In | (3-89)
0 K

[ e snayan = S {we) - a4 ¢} @90
0

where Re(n) > 0, Re(v) > 0, (v) is the psi function given by

v—-1
b)) =3 -1- —C, C=05T12 (3-91)

i=1

when v is a positive integer, and ((2,v) is the Riemann zeta function given
by

CQ,VFZﬁ’ £0,-1,-2,... (3-92)

=0
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Let 62 denote the variance of 7. Since E[¢?] = o2, the variance of &, we find
that

Bli] = 3[6(m) ~ In(m)] (3-93)
o) = ol + C@Tm)- (3-94)

The impact of the fading declines with increasing m. For Rayleigh fading,
m =1and ((2, 1) = 1.65, so E[n] = —25 and 02 = o2 + 31.0. For m = 5,
which approximates Ricean fading with Rice factor x = 8.47, E[n] = —0.45
and 072’ =024 42.

Consider a cellular network in which each base station is located at the
center of a hexagonal area, as illustrated in Figure 32. To analyze uplink
interference, it is assumed that the desired signal arrives at base station
0, while the other base stations are labeled 1, 2, ..., Ng. The directions
covered by one of three sectors associated with base station 0 are indicated
in the figure. Each mobile in the network transmits omnidirectionally and is
associated with the base station from which it receives the largest average
short-term or instantaneous power. This base station establishes the uplink
power control of the mobile. If a mobile is associated with base station i,
then (1-1), (1-4), and (3-86) indicate that the instantaneous power received
by base station j is

N\ B N\ B
Dij=poi( L) 10m/1° = po;( ZL)  exp(bn;) (3-95)
ij i RO (073 R{) Xp 77]

where r; is the distance to base station j, 7; is the equivalent shadowing
factor, po; is the area-mean power at r; = Rp, and it is assumed that the
attenuation power-law (3 is the same throughout the network. If the power
control exerted by base station ¢ ensures that it receives unit instantaneous
power from each mobile associated with it, then D;; = 1. Consequently,
po; = (ri/Ro)” exp(—bn;), and

T A
Dy = (E> explb(; ~ ) (3-96)
Assuming a common fading model for all of the {;}, (3-87) implies that
they all have the same mean value. The form of (3-96) then indicates that
this common mean value is irrelevant to the statistics of D;; and hence can
be ignored without penalty in the subsequent statistical analysis of D;;.
The simplifying approximation is made that the base station with which
a mobile is associated receives more instantaneous power than any other
station, and hence D;; < 1. This inequality is exact if the propagation losses
on the uplink and downlink are the same.

The probability distribution function of the interference power D at base
station 0 given that the mobile producing the interference is associated with
base station i is [25]

E(.’L‘) = P’I‘[Dio S T | D,;j S 1,0 S _7 S NB] = (}52(1‘) (3—97)

#:(1)




where
¢i(z) = Pr[Djp < 2;D;5 <1,0< j < Np]. (3-98)
Thus, Fi(z) =0if z < 0, and F;(z) =1if z > 1. Let
&i(x | mi,7i,0;) = Pr[Dijo < z; Dy <1,0< j < Np | m;, 73,65 (3-99)

where this probability is conditional on 7;, the equivalent shadowing fac-
tor for the controlling base station, and the polar coordinates r;,8; of the
mobile relative to base station i. It is assumed that each of the {n;} is statis-
tically independent with the common variance 0727. Therefore, given 7;, D;;
and Dy, j # k, are statistically independent. Since each of the {n;} has a
Gaussian probability density function, (3-96) implies that for0 < z <1,

bi(z | miy7s,6;) = Qc<bm + ﬂlng/m + lnz) H 0. (brh -+ ﬁbf,n(rj/n)>
n

=1
J#

(3-100)

where Q.(x) = 1 — Q(x), Q(x) is defined by (2-54), and r;, 0 < j < Np,isa
function of r;, 8;, and the location of base station j.

The probability ¢;(z), and hence the distribution F;(z), can be determined
by evaluating the expected value of (3-100) with respect to the random vari-
ables n;, r;, and 6;. If a mobile is associated with base station 3, then its lo-
cation is assumed to be uniformly distributed within a circle of radius R,
surrounding the base station. Therefore,

di(z) = /‘27r de /Rb dr ~ %—l;—) éi(z | n,7,0)  (3-101)
nT

which determines the distribution function in (3-97).

Let L. denote the total intercell interference relative to the unit desired-
signal power that each base station attempts to maintain by power con-
trol. Let K denote the number of active mobiles associated with a base sta-
tion or sector antenna, which may be a random variable because of voice-
activity detection or the movement of mobiles among the cells. Since E[D;]
and var[D;g] are the same for all mobiles associated with base station 4, a
straightforward calculation yields

Np
E[l] = E[K]) E[Dy] (3-102)
i=1

Ng Np 2
var[l] = E[K]) var|[Djo] + var[K] (ZE[M) (3-103)

In general, E[I;] and var[I;] decrease as the attenuation power law 3 in-
creases. The intercell interference factor, g = E[L.]/E[K), is the ratio of the
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average intercell interference power to the average intracell interference
power. Table 1, calculated in [25], lists g versus o, when Np = 60 cells in
four concentric tiers surrounding a central cell, R is five times the distance
from a base station to the corner of its surrounding hexagonal cell, and 8
= 4. The dependence of g on the specific fading model is exerted through
(3-94), which relates o, to m and o,. Table 1 also lists the variance factor g, =
var[I;.]/ E[K] assuming that var[ K] = 0.

The results in Table 1 depend on the pessimistic assumption that the equiv-
alent shadowing factors from a mobile to two different base stations are in-
dependent random variables. Suppose, instead, that each factor is the sum
of a common component and an equal-power independent component that
depends on the receiving base station. Then (3-96) implies that the common
component cancels. As a result, in determining g from Table 1, the effective
value of o, is reduced by a factor of v/2 relative to what it would be without
the common component.

Since 02 = o7 + 31.0 for Rayleigh fading and Table 1 indicates that g in-
creases slowly with o, the effect of the fading is unimportant or negligible
if 0, > 6 dB, which is usually satisfied in practical networks. If it is as-
sumed, as is tacitly done by many authors, that the power control is based
on a long-term-average power estimate that averages out the fading, then
the preceding equations and Table 1 are valid with o,, = 0.

3.7 SINR Analysis of Conditional Outage Probability

Table 1. Interference
factor and variance
factor as functions of o,
when var[K]=0.

For a direct-sequence CDMA system, it is assumed that the total power I;
of the multiple-access interference is approximately uniformly distributed
over the signal bandwidth, which is approximately equal to 1/7,. For
instantaneous power control, the instantaneous SINR is defined to be
E;/(No + I T;), the ratio of the received energy per symbol E; to the equiv-
alent power spectral density of the interference plus noise. An outage is
said to occur if the instantaneous SINR is less than a specified threshold Z,
which may be adjusted to account for any diversity or rake combining. In
this section, the interference is assumed to arise from K — 1 other active
mobiles in a single cell or sector. Let E; = I,T,,i=1,2,..., K — 1, denote

oy, dB g a1
3 0.460 0.137
4 0.486 0.143
6/V2 0.493 0.145
5 0.519 0.153
8/V2 0.544 0.162
6 0.558 0.167
7 0.598 0.183
10/v2 0.601 0.184
8 0.634 0.189




the received energy in a symbol due to interference signal 7 with power I;.
These definitions imply that an outage occurs if

K-1

EZ7Y < No+ 'cl.E SB (3-104)
=1

where G = T, /T, is the processing gain. Let E;y denote the common de-
sired energy per symbol for all the signals associated with the base sta-
tion of a single cell sector. When instantaneous power control is used,
E;=FEygeand E; = Eye¢;,t=1,2,..., K —1, where ¢y and ¢; are random
variables that account for imperfections in the power control. Substitution
into (3-104) yields the outage condition

G(Z - <X (3-105)

where g = E,0/Np is the energy-to-noise density ratio of the desired signal
when the power control is perfect, and we define

K-1
X=)>Y ¢ (3-106)
=1 .

By analogy with the lognormal spatial variation of the local-mean power,
each of the {¢;} is modeled as an independent lognormal random variable.
Therefore,

e = 105/1° — exp(b&;), i=0,1,2,...,K—1 (3-107)

where each of the {¢;} is a zero-mean Gaussian random variable with com-
mon variance o2. The moments of ¢; can be derived by direct integration or
from the moment-generating function of &;. We obtain '

2 .2
e

Ele;] = exp (bzcr

) , E[&] = exp(2b0?) (3-108)

If K is a constant, then the mean X and the variance o2 of X in (3-106) are

X=(K- 1)exp(bzza 2) , 05 = (K — 1)[exp(2b°07) — exp(b’?)] (3-109)

The random variable X is the sum of K — 1 lognormally distributed ran-
dom variables. Since the distribution of X cannot be compactly expressed
in closed form when K > 3, two approximate methods are adopted. The
first method is based on the central limit theorem, and the second method
is based on the assumption that o is small.
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Since X is the sum of K — 1 independent, identically distributed random
variables, each with a finite mean and variance, the central limit theorem
implies that the probability distribution function of X is approximately
Gaussian when K is sufficiently large. Consequently, given the values of
K and €, the conditional probability of outage may be calculated from
(3-105). Using (3-107) and integrating over the Gaussian density function
of £o, we then obtain the conditional probability of outage given the value
of K >> 1:

_ [ | G(Z7 % — 5 h) = X | exp(=£2/202) )
Pout(K) = /_ OOQ[ - N d¢  (3-110)

As o, — 0 and hence o, — 0, Pou(K) approaches a step function.

In the second approximate method, it is assumed that o, is sufficiently
small and K is sufficiently large that o, << X. From (3-109), it is observed
that a sufficient condition for this assumption is that

b2o?
VK —1>>exp 5 € (3-111)

The assumption implies that X is well approximated by the constant X
given by (3-109). Since the only remaining random variable in (3-105) is
€o = exp(b&y), it follows that

_ In[(K - 1)G'Z exp(b®62/2) + Zry ]
bo,

Pout(K) = Q{ } (3-112)

3.8 Variations in the Number of Active Mobiles
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In the derivations of (3-110) and (3-112), the number of mobiles actively
transmitting, K, is held constant. However, it is appropriate to model K
as a random variable because of the movement of mobiles into and out of
each sector and the changing of the cell or sector antenna with which a mo-
bile communicates. Furthermore, a potentially active mobile may not be
transmitting; for voice communications with voice-activity detection, en-
ergy transmission typically is necessary only roughly 40% of the time. As
is shown below, a discrete random variable K with a Poisson distribution
incorporates both of these effects.

To simplify the analysis, it is assumed that the average number of mobiles
associated with each cell or sector antenna is the same and that the location
of a mobile is uniformly distributed throughout a region. Let g denote the
probability that a potentially transmitting mobile is actively transmitting.
Then the probability that an active mobile is associated with a particular
cell or sector antenna is uq/N,, where N, is the number of mobiles in the
region and p is the average number of mobiles per sector. If the N, mobiles
are independently located in the region, then the probability of K = k ac-
tive mobiles being associated with a sector antenna is given by the binomial

distribution
IAYS R % A\ Nk
()@ 0-2) e



P(N,, k) =

where A = pgq is assumed to be a constant. This equation can be expressed
as

(L= /N = 2/Np) .. (L= (k= D/N:) (1 _ _*_)_k (1 - i) T ey

k! N, N,

As N, — oo, the initial fracion — 1/k!,(1 — A/N,)"®* — 1, and
(1= A/N;)Nr — exp(—)). Therefore, P(N,, k) approaches

exp(—A)\F
Py = 2B

which is the Poisson distribution function.

k=0,1,2,... (3-115)

Since the desired mobile is assumed to be present, it is necessary to cal-
culate the conditional probability that K = k given that K > 1. From the
definition of a conditional probability and (3-115), it follows that this prob-
ability is

exp(—A)\F
[1 — exp(=A)]k!’

and P,(0) = 0. Using this equation, the probability of outage is

P.(k) =

k=1,2,... (3-116)

_ = ep(=)NF
Powt = ; T exp (o) o Pout (k) (3-117)

where Py, (k) is given by (3-110) or (3-112).

The intercell interference from mobiles associated with other base stations
introduces an additional average power equal to gug(Eso/T;) into a given
base station, where g is the intercell interference factor. Accordingly, the im-
pact of the intercell interference is modeled as equivalent to an average of
gp additional mobiles in a sector [26]. When intercell interference is taken
into account, the equations of Section 3.7 for a single cell or sector are mod-
ified. The parameter . is replaced by x(1 + g), and A becomes the equivalent
number of mobiles

A=pq(l+g) (3-118)

Figure 33 illustrates the probability of no outage, 1 — Py, as a function of A
for various values of o.. Both approximate models, which give (3-110) and
(3-112), are used in (3-117) to calculate the curves. Equations (3-110) and
(3-112) indicate that the outage probability depends on the ratios G/Z and
40/G rather than on G, Z, and ~, separately. The parameter values for Fig-
ure 32 are G/Z = 40 and /G = 0.5, which could correspond to Z = 7 dB,
G =23 dB, and 7 = 20 dB. The closeness of the results for the two models
indicates that when o, < 2 dB both models give accurate outage proba-
bilities and the effect of power-control errors in the interference signals is
unimportant. As an example of the application of the figure, suppose that
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Figure 33. Probability of
no outage for
instantaneous power
control, G/Z =40, v, /G
=05,and 0. =0,1,2,

3 dB.
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the attenuation power law is 8 =4, 0, =8 dB, 0. = 1.0dB,and 1 — Py, =
0.95 is desired. Table 1 gives g = 0.63. The figure indicates that A = 23 is
needed. If ¢ = 0.4 due to voice-activity detection, the average number of
mobiles per sector that can be accommodated is x = 35.3. For data com-
munications, the network capacity is lower. For example, if g = 1, then the
average number of mobiles per sector that can be accommodated is 14.1.

3.9 Local-Mean Power Control

When the instantaneous signal power cannot be tracked because of the fast
multipath fading, one might consider measuring the local-mean power,
which is a long-term-average power obtained by averaging out the fading
component. This measurement enables the system to implement local-mean
power control. Two different analyses of the effects of local-mean power con-
trol are presented.

In the first analysis, which explores the potential effectiveness of local-
mean power control, all received signals experience Rayleigh fading and
the local-mean power control is perfect. Therefore, the received energy lev-
els are proportional to the squares of Rayleigh-distributed random vari-
ables and, hence, are exponentially distributed, as shown in Appendix A-4.
Thus, Es = Eg € and E; = E,¢;, whereeache;, i =0,1,2,..., K —1,is
an independent random variable with the exponential probability density
function:

fs(x) = exp(—z)u(z) (3-119)



and Ey is the desired value of the average energy per symbol after aver-
aging over the fading. The probability distribution function of the sum of
K- 1independent random variables, each with the exponential density of
(3-119), is given by (A-50). Therefore, X in (3-106) has the distribution

K-2 ;
Fx(z)=1-exp(~2) Y % ,z>0 (3-120)

1=0

Conditioning on the value of €, using (3-120) to evaluate the probability of
the outage condition (3-105), and then removing the conditioning by using
(3-119) yields

K-2

P B) = [ e empi-e(e) Y Sk g (3-121)
0 =0
where
(&) =GZ7'¢ -Gyt (3-122)

Replacing [c(£)]’ by its binomial expansion, we obtain a double summation
of integrals that can be evaluated using the gamma function defined by
(A-12). After simplification, we obtain

K-2 i G_l GZ_ll—G 1Nl
Pout(K) = ZO ZZ exp( (i’)’i l;!((l — G)Z(—l)lz(i ) (3-123)

Interchanging the two sums and changing their limits accordingly, the in-
ner sum is over a geometric series. Evaluating it, we obtain the final result:

—1\I —1 K-1-1
Pout(K) = exp(Gg ) Z (__9‘__) [1 - (ITC:%Z——T) ] (3-124)

The probability of outage is determined by substitution into (3-117). When
~o = 00, only the [ = 0 term in (3-124) is nonzero. Substitution into (3-117)
and evaluation of the sum yields

exp (T;F)‘-ﬁ) -

POllt=1_ e}cp(A)—l

1
1+G12), =00 (3-125)

For perfect local-mean power control and Rayleigh fading, (3-119) gives
Ele;) =1 and Var(ez) = 1. Therefore, a sufficient condition for o, << X
is that /K —1 >> 1. If this condition is satisfied, then X is well approx-
imated by X = K — 1, which is equivalent to ignoring the fading of the
multiple-access interference signals. With this approximation, the only re-
maining random variable in (3-105) is exponentially distributed, and hence
the conditional probability of outage given K is

Pout(K) = 1 —exp[—(K — 1)G™'Z — 15" Z] (3-126)
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Figure 34. Probability of
no outage for perfect
local-mean power
control, G/Z = 40, and
Y%/G =0.5, co.
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Substituting this equation into (3-117) and evaluating the sum, we obtain
the approximation

exp(—15'Z + G71 Z)[exp(Aexp(-G~12)) ~ 1]
exp(A) — 1

Pog=1— (3-127)

Figure 34 illustrates the probability of no outage as a function of \ for G/Z
= 40 and two values of /G using either the approximation (3-127) or the
more precise (3-125), (3-124), and (3-117). It is observed that neglecting the
fading of the interference signals and using the approximation makes lit-
tle difference in the results. The effect of vg = E4/Np is considerable. A
comparison of Figures 34 and 33 indicates that when Rayleigh fading oc-
curs, even perfect local-mean power control is not as useful as imperfect
instantaneous power control unless o, is very large.

Since accurate power measurements require a certain amount of time,
whether a power-control scheme is instantaneous, local mean, or some-
thing intermediate depends on the fading rate. To reduce the fading rate so
that the power control is instantaneous and accurate, one might minimize
the carrier frequency or limit the size of cells if these options are available.

The second analysis of the effects of local-mean power control uses the
preceding results to develop a simple approximation to previous perform-
ance calculations [26], [27]. This analysis has the advantages that the fad-
ing statistics do not have to be explicitly defined and the effect of imperfect
local-mean power control is easily calculated. Let E; denote the local-mean

1 T T T T T
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energy per symbol, which is defined as the average energy per symbol after
averaging over the fading. Similarly, let I;; denote the total local-mean in-
terference power in the receiver, and let E;; denote the local-mean received
energy per symbol due to interference signal i. The local-mean SINR is de-
fined to be Eg /(No+IyTe). For this analysis, a local-mean outage is said to oc-
cur if the local-mean SINR is less than a specified threshold Z;, which may
be adjusted to account for the fading statistics and any diversity or rake
combining. When the local-mean power control is imperfect, Ey; = E,o¢
and E; = Eye;, i =1,2,..., K — 1, where ¢ and ¢; are lognormally-
distributed random variables with the common variance oZ,. A derivation
similar to that leading to (3-112) indicates that if (3-111) is satisfied, then

_ In[(K - )G Z, exp(b?02,/2) + Z1yy Y]
boie

Pout(K) = Q{ } (3-128)

and Py is calculated by using (3-117) and (3-118). The intercell interference
factor g can be determined by setting 0,, = o, since the fading statistics
do not affect the local-mean SINR. For adequate network performance in
practical applications, Z; must be set much higher than the threshold Z in
(3-112) because the local-mean SINR changes much more slowly than the
instantaneous SINR.

The following example is used to compare the results of evaluating (3-117),
(3-118), and (3-128) with the results obtained by Corazza et al. [27], who
used a far more elaborate analysis. Consider a cellular network with three
sectors, Z; =7 dB, o, = 6 dB, and ¢ = 3/8 due to the voice activity. Table 1
gives g =0.558. A spectral band of bandwidth W = 1.25 MHz is occupied by
the direct-sequence CDMA signals. The symbol rate is 1/T; = 8 kb/s so that
the processing gain is G = 156.5. The local-mean signal-to-noise ratio before
the despreading is —1 dB and ~p = 20.94 dB after the despreading. Figure
35 shows the local-mean outage probability versus the average number of
mobiles per cell, 3 11, which is triple the average number of mobiles per sec-
tor. The results of [27] for outage probabilities of 1072, 1072, and 103 are
indicated by the open circles. The proximity of these points to the curves
indicates that the simple equations (3-117), (3-118), and (3-128) closely ap-
proximate the local-mean outage probability.

3.10 Bit-Error-Probability Analysis

Uplink capacity is the number of mobiles per cell that can be accommodated
over the uplink at a specified information-bit error rate. Assuming a con-
ventional correlation receiver and typical conditions for cellular communi-
cations, the subsequent results indicate that when imperfect power control
causes the standard deviation of the received power from each mobile to
increase beyond 2 dB, the uplink capacity rapidly collapses. The results
are consistent with those obtained by several other authors for slow fad-
ing (e.g., [22], [27]), but are examined here for fast-fading conditions also.
When the instantaneous signal level cannot be tracked, one might consider
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Figure 35. Local-mean
outage probability for
Z;=7dB,¢g=3/8,¢g=
0.558, G = 156.5, and 7
=20.94 dB with o, =0,
1, 2, 3 dB. Other
theoretical results are
indicated by the open
circles.
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measuring the local-mean power. Accurate local-mean power control elim-
inates the near-far problem and shadowing effects, but not the effects of the
fading. In the subsequent analysis, it is confirmed that tracking the local-
mean power is less useful than attempting to track the instantaneous signal
level even if the latter results in large errors.

Consider a CDMA cell or sector with K active mobiles. The direct-sequence
signals use quadriphase-shift keying (QPSK) modulation. Equation (3-84)
indicates that the conditional symbol error probability given E; and E; =
LT is approximately given by

P,(E;, Ey) = Q<\/ ot \2/%0_1& ) (3-129)

It is assumed that the distribution of E; and E; and the values of G and N,
are such that (3-83), which is used in the derivation of (3-129), is satisfied
with high probability in the subsequent analysis. We consider three models
for power control: perfect instantaneous power control (perfect ipc), im-
perfect instantaneous power control (imperfect ipc) with lognormally dis-
tributed errors, and perfect local-mean power control (perfect Impc).

If the power control is instantaneous and perfect, then E; = E, = Ey,
i=1,2,..., K —1,and E; = (K — 1)E4. Equation (3-129) implies that the
conditional symbol error probability given K is

2 .
Py(K) = Q( \/ T VRGE =) > (perfectipc) (3-130)



where yo = E /Ny is the energy-to-noise-density ratio when the power
control is perfect. If the power control is imperfect with lognormally dis-
tributed errors, then

Es = Esoeo , By = EoX (3-131)

and (3-106) to (3-109) are applicable. If (3-111) is satisfied, then X >> o,
and X is well-approximated by X. Since ¢y = exp(b&p) and & has a Gaus-
sian density, (3-129) and an integration over this density yield

_ [ exp(=2?/202) 2 exp(b)
Fi(K) = /-oo V270, Q(\/'yo"l + VhG-1(K — 1) exp(b252/2) ) de
(imperfect ipc) (3-132)

Suppose that instead of the instantaneous signal power, the local-mean
power averaged over the fast fading is tracked. If this tracking provides
perfect power control of the local-mean power at a specific level, then a re-
ceived signal still exhibits fast fading relative to this level. If the fast fading
has a Rayleigh distribution but the fading level is constant over a symbol
interval, then the received energy per symbol is E; = Espeg, where ¢ has
the exponential probability density function given by (3-119). Therefore,
(3-129) implies that the conditional symbol error probability given E; is

*° 2z
P,(E;) = / exp(—x dr
&) = |, o=l )Q<\/70“1 +vVhG1E,/Eq )
= % - %(1 + 9+ VRGIE, /Ey) 2 (3-133)

where the integral is evaluated in the same way as (2-57). The total interfer-
ence energy E; is given by (3-131) and (3-106), where each ¢; is an indepen-
dent, exponentially distributed random variable with mean equal to unity.
Therefore E;/Eso has a gamma probability density function given by (A-49)
with N = K — 1, and for K > 2 the conditional symbol error probability
given K is

Ps(K) =

1 /°° K2 exp(—z)
0

- dz (perfect Impc)
(K =21 +757 + VAG-12) /2

1
2 2
(3-134)

. Perfect symbol interleaving is defined as interleaving that causes independent
symbol errors in a codeword. Assuming that fast fading enables perfect
symbol interleaving, the information-bit error probability for hard-decision
decoding can be calculated by substituting (3-130), (3-132), or (3-134) into
(2-178), which gives

i £ £ ()re-rre £ (Smeen] o

i=t+1 i=dm+1
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where g is the number of symbols in the alphabet, n is the code length, d,,
is the minimum distance, and ¢ is the maximum number of symbol errors
that can always be corrected. If r is the code rate and E, is the energy per bit
that is available when the channel symbols are uncoded, then vy = rE, /Ny
in (3-130), (3-132), and (3-134). As was done previously, the impact of the
intercell interference is modeled by replacing K with K(1 + g) in the pre-
ceding equations, where g is obtained from Table 1. Averaging over K by
using (3-116), we obtain

Po=Y 22 P (3-136)

where the equivalent number of mobiles ) is given by (3-118).

Suppose that the fading is slow enough that the interleaving is ineffec-
tive and, hence, the error in the instantaneous power control is fixed over
a codeword duration. Then an approximation similar to that preceding
(3-132) implies that the information-bit error probability for hard-decision
decoding of a block code given K is

00 2 2
Py(K) = /_ ~ %ﬁz_‘@%(mg(z» dzx (3-137)

- where P/, (K, Py(z)) is given by (3-135) with P, replaced by

_ 2 exp(bx) i
= Q(\/val FVRG(K - 1>exp<b2a3/2>> 1)

Equations (3-136) to (3-138) give the information-bit error probability for
slow fading.

Plots of the information-bit error probability versus A for instantaneous
power control, v = 13 dB, G = 128, a rectangular chip waveform with &
=2/3, and various values of o, in decibels are illustrated in Figure 36. The
block code is the binary BCH (63,30) code, for which d,, = 21 and ¢ = 10.
Equations (3-137) and (3-138) are used for slow fading, and (3-130), (3-132),
and (3-135) are used for fast fading. When the fading is slow and the inter-
leaving is ineffective, the coding is, as expected, less effective than when the
fading is fast and the interleaving is perfect, provided that o, remains the
same. However, o, increases with the fading rate, as shown subsequently.
The figure indicates that when o, > 2 dB, there is a severe uplink capacity
loss for slow fading and a substantial one for fast fading. The results for
other block codes are qualitatively similar.

The use of spatial diversity or, in the presence of frequency-selective fading,
a rake receiver will improve the performance of a direct-sequence CDMA
system during both slow and fast fading, but the improvement is much
greater when the fading is slow. As the fading rate increases, the accuracy
of the estimation of the channel parameters used in the rake or diversity
combiner becomes more difficult. When the channel-parameter estimation
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errors are too large to be accommodated, the coherent maximal-ratio com-
biner must be replaced by the suboptimal noncoherent equal-gain com-
biner, which does not require the estimation of channel parameters.
In Figure 36, the information-bit error probability is depicted for perfect
local-mean power control with the same parameter values and coding as
for instantaneous power control. It is assumed that fast fading permits
perfect interleaving so that (3-134) and (3-135) are applicable. The figure
confirms that tracking of the local-mean power level is an inferior strategy
for obtaining a large capacity compared with tracking of the instantaneous
power level unless the inaccuracy of the latter is substantial. Another prob-
lem with local-mean power control is that it requires time that may be un-
available for sporadic data. '
Apart from power control, instantaneous power measurements can be used
to facilitate adaptive coding or adaptive transmitter diversity. Both of these
techniques require timely information about the impact of the fading, and
this information is inherent in the instantaneous power measurements.
. 3.11 Impact of Doppler Spread on Power-Control Accuracy

When the received instantaneous power of the desired signal from a mobile
is tracked, there are four principal error components. They are the quanti-
zation error due to the stepping of the transmitted power level, the error
introduced in the decoding of the power-control information at the mo-
bile, the error in the power measurement at the base station, and the er-
ror caused by the processing and propagation delay. Let 04, 04, om, and o,

denote the standard deviations of these errors, respectively, expressed in
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decibels relative to the received power. Usually, o, and o, are much larger
than o, and o4 [22]. The processing and propagation delay is a source of
error because the multipath propagation conditions change during the ex-
ecution of the closed-loop power-control algorithm.

Assuming that the error sources are independent, the variance of the power-
control error can be decomposed as

o2 =02+ 02+ 02 + 03 (3-139)

If o, is to be less than 2 dB and o, is typically more than 1.5 dB, as indi-
cated by the results in [22], then even if 5, and o4 are small, op <13dB
is required. Let v denote the maximum speed of a mobile in the network,
fc the carrier frequency of its direct-sequence transmitted signal, and c the
speed of an electromagnetic wave. It is assumed that this signal has a band-
width that is only a few percent of f. so that the effect of the bandwidth is
negligible. The maximum Doppler shift or Doppler spread is

fa= fev/e (3-140)

which is proportional to the fading rate. To obtain o, < 1.3 dB requires
nearly constant values of the channel attenuation during the processing
and propagation delay. Thus, this delay must be much less than the co-
herence time, which is approximately equal to 1/ f;, as indicated in (1-40).
Examination of attenuation plots for representative multipath scenarios [6]
indicates that this delay must be less than a/f;, where o ~ 0.1 or less if
op < 1.3 dB is to be attained. The propagation delay for closed-loop power
control is 2d/c, where d is the distance between the mobile and the base
station. Therefore, the processing delay 7, must satisfy
a 2

L<p-7 (3-141)
Since T, must be positive, this inequality and (3-140) imply that o, < 1.3 dB
is only possible if f. < ac?/2dv. Thus, if the carrier frequency or maximum
vehicle speed is too high, then the propagation delay alone makes it impos-
sible for the system to attain the required o, throughout the network. If v =
25m/s,d=10km, a =0.1,and f, = 850 MHz, then (3-141) and (3-140) give
I, <1.34 ms. The IS-95 system, which must accommodate similar parame-
ter values, uses 7, = 1.25 ms.

Let p,, denote the measured power level of a received signal in decibels;
thus, py, is an estimate of 10 log py, where py is the average received signal
power from a mobile and the logarithm is to the base 10. Let 02,; denote
the variance of an estimate of In py, the natural logarithm of po. It follows
that the variance of p,, is

o2, = (10loge)%o2, (3-142)

It is assumed that power variations in a received signal at the base station
are negligible during the measurement interval T;,, which is a large com-
ponent of the processing delay T),. Errors in the power measurement occur



because of the presence of multiple-access interference and white Gaus-

sian noise. A lower bound on o2, can be determined by assuming that

the power control is effective enough that the received powers from the
mobiles in the cell or sector are approximately equal. The multiple-access
interference is modeled as a Gaussian process that increases the one-sided
noise power spectral density from Ny to

Ny = No+ %(K ~1)(1+g) (3-143)

where po is the common signal power of each mobile at the base station and
B is the bandwidth of the receiver.

The received signal from a mobile that is to be power-controlled has the
form . /pos(t), where s(t) has unity power. Thus,

/ " 2wyt =1, (3-144)
0

The received signal can be expressed as

J/Pos(t) = exp (%) s(?) (3-145)

where y = Inpo. The Cramer-Rao bound [28] provides a lower bound on
the variance of any unbiased estimate or measurement of In py. This bound

and (3-145) give
2 [Tn |8 A
2 >{= —e¥/? .
Op1 = { N, /0 [ 83/e s(t)] dt} (3-146)

Evaluating (3-146) and using (3-142) and (3-143), we obtain

o2 > 200(log e)? [& + (K -1)(1 +g)]

P P B (3-147)

Let i = T, — T, denote the part of the processing delay in excess of
the measurement interval. Substituting (3-139) and (3-141) into (3-147), we
‘obtain

2d N (K-1)1+9)
259 2f @ 40 T 0 2 2 2
oz > 200(log e) (—fd —-Tn 7 + —p + 0, + 05+ 03
(3-148)

This lower bound indicates that 2 increases with f; and, hence, the fading
rate when the power estimation is ideal.

Inequality (3-148) indicates that an increase in the Doppler spread f; can
be offset by an increase in the bandwidth B. This observation clarifies why
third-generation cellular CDMA systems such as WCDMA or cdma 2000
exhibit no more sensitivity to power-control errors than the IS-95 system
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despite the substantial increase in the fading rate due to the increased car-
rier frequency. The physical reason is that an expansion of the bandwidth
of the direct-sequence signals allows enough interference suppression to
more than compensate for the increased Doppler spread. Furthermore, the
potential effect of power-control errors on third-generation CDMA systems
is mitigated by the use of convolutional and turbo codes more powerful
than the IS-95 codes.

Consider a network of CDMA systems that do not expand the bandwidth
when the Doppler spread changes, but adjust 7}, so that (3-141) provides
a tight bound. Ideal power estimation is assumed so that the lower bound
in (3-148) approximates o2. If the other parameters are unchanged as the
Doppler spread changes from f4; to fg, then o2 is only affected by the
Doppler factor defined as

D= Jar (3-149)
fa1

An example of the impact of the Doppler factor is illustrated in Figure
37, which shows the upper bounds on P, for instantaneous power con-
trol and the BCH (63,30) code. The network experiences slow fading and
a Doppler spread fg; = 100 Hz. The Doppler factor is D = 1. When the
Doppler factor is D = 2, 3, or 4, perhaps because of increased vehicular
speeds, the network is assumed to experience fast fading. The parameter
valuesare a = 0.1,d = 10 km, T3 =100 pus, B = 1/T, = 1.25 MHz, Ny /po =
5 us, 012, + crg + 03 =05(dB)%, h =2/3,G =128, and 7 = poLs/No =
(po/No)(G/B) = 20 = 13 dB. The calculations use (3-148), (3-132) and
(3-135) to (3-138). In this example, D > 2.5 causes a significant performance
degradation despite the improved time diversity during the fast fading.

When fast fading causes large power-control errors, a direct-sequence
CDMA network exhibits a significant performance degradation, notwith-
standing the exploitation of time diversity by interleaving and channel cod-
ing. Adopting long-term-average instead of instantaneous power control
will not cure the problem. A better approach is to increase the bandwidth of
the direct-sequence signals. If the bandwidth cannot be increased enough,
then the Doppler spread might be reduced by minimizing the carrier fre-
quency of the direct-sequence signals. Another strategy is to limit the size
of cells so that the network must cope with the more benign Ricean fading
rather than Rayleigh fading, which is more likely to cause large power-
control errors.

It follows from (3-147) and T}, = T, + T that a specified o, can be attained
if

200(1 2 [/ N,
T, > —@(&‘Q’g—e) [ (E?) + K1+ g)] 4Ty (3-150)

where K; = (K — 1)/B is the number of interfering active mobiles per unit
bandwidth in the cell or sector. Inequalities (3-150) and (3-141) restrict the
range of feasible values for T},.
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Figure 37.
Information-bit error
probability for slow
fading and fast fading
with different Doppler
factors D. Instantaneous
power control and the
BCH (63,30) code are
used.
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Combining (3-140), (3-141), and (3-150) and assuming that K is large
enough that K; ~ K/B, we conclude that to attain 0. < 2 dB for vehi-
cles at speed v or less, an approximate upper bound on the uplink capacity
per unit bandwidth in a cell or sector is given by

2 2d N
K -1f_9m [ ¢ _ _[No) }
1<(+9) [QOO(log e)? (vfc c h ADpo ) (3-151)
For typical parameter values, this upper bound is approximately inversely
proportional to both the carrier frequency f. and the maximum vehicle

speed v.

Figure 38 illustrates the upper bound on the uplink capacity per megahertz
as a function of frequency f. for a =0.1, 0, =1.5dB, 0,, =8 dB, Ny/po =5 ps,
T1 = 100 us, and representative values of d and v. Table 1 gives g = 0.634.
The figure indicates the limitations on K7 due to power control as the car-
rier frequency increases if o,, and the other parameters remain fixed. If K;
exceeds the upper bound, then the network performance will be severely
degraded. The uplink capacity K; B can be maintained by expanding the
bandwidth.

One might consider circumventing power control by adopting a multiuser
detector [29] in the base station in place of the conventional single-user cor-
relation detector. In its optimal form, a multiuser detector can theoretically
eliminate the near-far problem along with intracell multiple-access interfer-
ence, but such a detector is prohibitively complex to implement, especially
when long spreading sequences are used. Though suboptimal compared
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Figure 38. Upper bound
on uplink capacity per
megahertz for a = 0.1,
om =15dB, g =0.634,
No/po =5 MS, and T1 =
100 ps.
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with ideal multiuser detection, multiuser interference cancellers [30] bear
a much more moderate implementation burden and still provide consid-
erable interference suppression. However, it appears that accurate power
control is still needed at least for initial synchronization and to avoid over-
loading the front end of the receiver. Third-generation CDMA systems use
adaptive interference cancellation but retain a closed-loop power-control
subsystem.

3.12 Downlink Power Control and Outage

100

Along with all the signals transmitted to mobiles associated with it, a base
station transmits a pilot signal over the downlinks. A mobile, which is usu-
ally associated with the base station from which it receives the largest pi-
lot signal, uses the pilot to identify a base station or sector, to initiate up-
link power control, to estimate the attenuation, phase shift, and delay of
each significant multipath component, and to assess the power-allocation
requirement of the mobile.

A base station synchronously combines and transmits the pilot and all the
signals destined for mobiles associated with it. Consequently, all the sig-
nals fade together, and the use of orthogonal spreading sequences will
prevent intracell interference and, hence, a near-far problem on a down-
link, although there will be interference caused by asynchronously arriving
multipath components. The orthogonal sequences can be generated from
the rows of a Hadamard matrix defined by (3-17). The orthogonality, the
energy-saving sharing of the same pilot at all covered mobiles, and the co-
herent demodulation of all transmitted signals are major advantages of the



downlinks. However, interference signals from other base stations arrive
at a mobile asynchronously and fade independently, thereby significantly
degrading performance.

Although there is no near-far problem on the downlinks, power control is
still desirable to enhance the received power during severe fading or when
a mobile is near a cell edge. However, this power enhancement increases
intercell interference. Downlink power control entails power allocation by
the base station in a manner that meets the requirements of the individual
mobiles associated with it. Let C;; denote the total power received by mo-
bile 7 from base station j. If this mobile is associated with base station 0,
then the SINR at the mobile is

:3¢1 zOT

SINR = N1
No-l—}:B C T.

(3-152)

where Np is the total number of base stations that produce significant
power at mobiles in a cell or sector, § is the fraction of the base-station
power that is assigned to mobiles rather than to the pilot, and ¢; is the frac-
tion of the total power for mobiles in a cell or sector that is allocated to
mobile i. Typically, one might set 5 = 0.8, which entails a 1-dB loss due to
the pilot. Let R denote the SINR required by network mobiles for accept-
able performance. Inverting (3-152), it is found that R is achieved by all
mobiles in a cell or sector if

Np-1
¢"BCOG< Z cl,>, i=12,...,K (3-153)

An outage occurs if the demands of all K mobiles in a cell or sector cannot
be met simultaneously. Thus, no outage occurs if (3-153) is satisfied and

K
> oxi¢i<1 (3-154)

i=1

where ; is the voice-activity indicator such that x; = 1 with probability ¢
and x; = 0 with probability 1 —q. If the left-hand side of (3-154) is strictly
less than unity, then the transmitted power produced by base station 0 can
be safely lowered to reduce the interference in other cells or sectors. Com-
bining (3-153) and (3-154), a necessary condition for no outage is

Np-1
Z Cw( + Y c,]> <= (3-155)

J=1

The assignment of mobile ¢ to base station 0 implies the constraint that
Cij < Cyp,j = 1,2,...,Np — 1, except possibly during a soft handoff. A
complete performance analysis with this constraint is difficult. Simulation
results [26] indicate that the downlink capacity potentially exceeds the up-
link capacity if the orthogonal signaling is not undermined by excessive
multipath.
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3.13 Multicarrier Direct-Sequence CDMA

102

A wideband direct-sequence CDMA signal, which occupies a spectral band
that exceeds the coherence bandwidth, can support a large information
rate, provides a large processing gain, and can exploit rake combining of
multipath signals. An alternative to wideband direct-sequence CDMA is
multicarrier direct-sequence CDMA in which the available band is partitioned
among multiple direct-sequence signals, each of which has a distinct carrier
frequency. The main attractions of the multicarrier system are its potential
ability to operate over disjoint, noncontiguous spectral regions and its abil-
ity to avoid transmissions in spectral regions with strong interference or
where the multicarrier signal might interfere with other signals. These fea-
tures have counterparts in frequency-hopping CDMA systems.

A typical multicarrier system divides a spectral band of bandwidth W into
M regions, each of bandwidth W/M approximately equal to the coherence
bandwidth [31], [2]. In the transmitter, the product of the data modulation
and the spreading waveform, m(t)p(t), simultaneously modulates M car-
riers, each of which has its frequency in the center of one of the M spec-
tral regions, as illustrated in Figure 39. The receiver comprises M parallel
demodulators, one for each carrier, the outputs of which are suitably com-
bined. The total signal power is divided equally among the M carriers. The
chip rate and, hence, the processing gain for each carrier of a multicarrier
direct-sequence system is reduced by the factor M. However, if strong in-
terference exists in a spectral region, the associated carrier can be omitted
and the saved power redistributed among the remaining carriers. Error cor-
recting codes and interleaving can be used to provide both time diversity
and coding gain.

Since the M spectral regions are defined so that the fading in each of them
is independent and frequency nonselective, rake combining is not possible,
but the frequency diversity provided by the M regions can be exploited
in a diversity combiner. Whether or not the diversity gain exceeds that of
a single-carrier system using the entire spectral band and rake combining

.depends on the multipath intensity profile.

As an illustration of this issue, we compare the performance of multicar-
rier and single-carrier direct-sequence systems occupying the same band
with Rayleigh fading but no interference. The data modulation is PSK or
QPSK. Assuming that the interference among the subcarriers in the receiver
is negligible, P, for the multicarrier system is given by (2-62) and (2-64)
with L = M and 5/M in place of ¥ to reflect the power division. Since
only white Gaussian noise is present, the processing gain is irrelevant, and
the bit error probability P, for ideal rake combining in the single-carrier
receiver is given by (2-148). It is assumed that the largest multipath compo-
nent in the rake combiner has an average SNR such that5; = yand that L =
4 components are present. Figure 40 plots P, for multicarrier systems with
M =4 and 8 and for single-carrier systems with (3, 43 44) = (1 1 0)5 and
(3 7 §)7- It is observed that the multicarrier system provides a superior
diversity gain when M is sufficiently large.
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4. Frequency-Hopping Code-Division Multiple Access
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The two principal types of code-division multiple access (CDMA) are
direct-sequence CDMA and frequency-hopping CDMA. Two major advan-
tages of frequency hopping are that it can be implemented over a much
larger frequency band than it is possible to implement direct-sequence
spreading, and that the band can be divided into noncontiguous segments.
Another major advantage is that frequency hopping provides resistance to
multiple-access interference while not requiring power control to prevent
the near-far problem. In direct-sequence systems, accurate power control is
crucial but becomes much less effective as the fading rate increases. These
advantages of frequency hopping will be decisive in many applications.

Mobile peer-to-peer communications are used in mobile communication
networks that possess no supporting infrastructure, fixed or mobile; each
user has identical signal processing capability. Peer-to-peer communica-
tions have both commercial applications and important military applica-
tions, the latter primarily because of their robustness in the presence of
node losses. Mobile frequency-hopping CDMA systems [32] are suitable
for both peer-to-peer and cellular communication networks. Power control
and, hence, current direct-sequence CDMA are not viable for peer-to-peer
communications because of the lack of a centralized architecture. Current
plans to use multiuser detection in direct-sequence CDMA systems still re-
quire power control, which is highly desirable for the synchronization.

Compared with the alternatives, CDMA is advantageous for cellular net-
works because it eliminates the need for frequency and timeslot coordi-
nation among cells, allows complete frequency reuse in all cells, and can
fully exploit intermittent voice signals and sectorization. Both frequency-
hopping and direct-sequence systems are viable choices for mobile cellular
CDMA communications.

Through analysis and simulation, a unified evaluation of the potential per-
formance of both mobile peer-to-peer and sectorized cellular frequency-
hopping CDMA systems is presented. The equivalent number of frequency
channels and the minimum signal-to-noise ratio (SNR) are defined and
shown to be important parameters in understanding and predicting net-
work capacity. The effects of spectral splatter are analyzed. Separated or-
thogonality is defined and shown to be useful in completely eliminating in-
tracell or intrasector interference. Spatial diversity by postdetection rather
than predetection combining is proposed and shown to be invaluable. Non-
coherent demodulation by a frequency discriminator rather than parallel
matched filters and envelope detectors is proposed and shown to be ef-
fective. It is shown that even without exploiting either its natural band-
width advantage or power control, frequency-hopping CDMA provides an
uplink capacity nearly the same as direct-sequence CDMA with realistic
power-control imperfections.



4.1 Characteristics and Parameters

Figure 41. Time
durations of a
frequency-hopping
pulse after the
dehopping in the
receiver.

The duration of a hop, denoted by T}, is equal to the sum of the dwell
time Ty and the switching time T,,. As illustrated in Figure 41, the dwell
time is the duration of the frequency-hopping pulse during which the chan-
nel symbols are transmitted. The switching time is equal to the dead time,
when no signal is present, plus the rise and fall times of a pulse. Even if
the switching time is absent in the transmitted signal, it will be present in
the dehopped signal in the receiver because of the imperfect synchroniza-
tion of received and receiver-generated waveforms. The nonzero switching
time, which may include an intentional guard time, decreases the trans-
mitted symbol duration T;. If T, is the symbol duration in the absence of
frequency hopping, then T; = T,(T4/T}). The reduction in symbol dura-
tion expands the transmitted spectrum and thereby reduces the number of
frequency channels within a fixed total hopping band. Since the receiver fil-
tering will ensure that rise and fall times of pulses have durations on the or-
der of T, the practical assumption that Ty, > T is made in the subsequent
analysis. Thus, each multiple-access interferer transmits in at most one fre-
quency channel during the reception of a single symbol of the desired sig-
nal. Since the overhead cost of the nonzero switching time is reduced and
equalization symbols can be accommodated, it is preferable to use slow
frequency hopping with many symbols per hop, rather than fast frequency
hopping, for communications over fading channels. Both slow and fast fre-
quency hopping provide automatic frequency diversity, but slow hopping
also requires symbol interleaving over a number of hops.

Even in the absence of fading, there are constraints on the values of the pa-
rameters of a frequency-hopping system. It is assumed that the receiver
transfer function following the dehopping is approximately rectangular
with bandwidth B, which is equal to the bandwidth of a frequency chan-
nel. The bandwidth is determined primarily by the percentage of the signal
power that must be processed by the demodulator if the demodulated sig-
nal distortion and the intersymbol interference are to be negligible. In prac-
tice, this percentage must be at least 90 percent and is often more than 95
percent. The relation between B and the symbol duration may be expressed
as

B= i 4-1
T (1)
je——~Dwell time————»
]
| Rise | Fall
— e - g
__,iDead Lu_nie time
time |
e — Hop duration ———————— >

105




106

where ( is a constant determined by the signal modulation. For example, if
minimum-shift keying is used, then ¢ = 0.8 if 90 percent of the signal power
is included in a frequency channel, and ¢ = 1.2 if 99 percent is included.

Let M denote the number of carriers and frequency channels, W the total
bandwidth occupied by the M channels, and F; the minimum separation
between the carriers in a hopset. For full protection against stationary nar-
rowband interference and jamming, it is desirable that F;, > B so that the
frequency channels are nearly spectrally disjoint.

To obtain the full advantage of block or convolutional error-correcting
codes, it is important to interleave the code symbols in a codeword or in
a constraint length in such a way that the symbol errors are independent
(for hard-decision decoding) or that the symbols are degraded indepen-
dently (for soft-decision decoding). In frequency-hopping systems operat-
ing over a fading channel, the realization of this independence requires
certain constraints among the system parameter values. Symbol errors are
independent if the fading is independent in each frequency channel and
each symbol is transmitted in a different frequency channel. If each of the
interleaved code-symbols is transmitted at the same location in each hop
dwell time, then adjacent symbols are separated by T}. Thus, a sufficient
condition for nearly independent symbol errors is

Th = Tcoh (4'2)

where T, is the coherence time of the fading channel. Another sulfficient
condition for nearly independent symbol errors is

Fs > Beon (4-3)

where B, is the coherence bandwidth of the fading channel. For prac-
tical mobile communication networks with hopping rates exceeding 100
hops/s, (4-2) is rarely satisfied. In a hopset with a uniform carrier separa-
tion, F; = W/M > B. Thus, (4-3) implies that the number of frequency
channels is constrained by
144

M= max (B, Beon) (4-4)
if nearly independent symbol errors are to be ensured. If (4-4) is not satis-
fied, there will be a performance loss due to the correlated symbol errors. If
B < Beon, equalization will not be necessary. If B > B, either equaliza-
tion may be used or a multicarrier modulation may be combined with the
frequency hopping.

Let n denote the length of a block codeword or the constraint length of
a convolutional code. Let Tyq denote the maximum tolerable processing
delay. Since the delay caused by coding and ideal interleaving over n hops
is (n — 1)T, + T, and n distinct frequencies are desired,

Tdel - Ts)

T, (4-5)

nSmin(M,1+



is required. If (4-5) is not satisfied, then nonideal interleaving is necessary,
and some performance degradation results.

Spectral splatter is the interference produced in frequency channels other
than the one being used by a frequency-hopping pulse. It is caused by
the time-limited nature of transmitted pulses. The degree to which spec-
tral splatter may cause errors depends primarily on Fj, the percentage of
the signal power included in a frequency channel, and the spectral charac-
teristics of the signal modulation. One can usually choose these variables
so that with high probability only pulses in adjacent channels produce a
significant amount of spectral splatter in a frequency channel.

The adjacent splatter ratio K is the ratio of the power due to spectral splat-
ter from an adjacent channel to the corresponding power that arrives at the
receiver in that channel. For example, if B is the bandwidth of a frequency
channel that includes 97 percent of the signal power and F; > B, then no
more than 1.5 percent of the power from a transmitted pulse can enter an
adjacent channel on one side of the frequency channel used by the pulse;
therefore, K; < 0.015. A given maximum value of K can be reduced by
an increase in Fj, but eventually the value of M must be reduced if W is
fixed. As a result, the rate at which users hop into the same channel in-
creases. This increase may cancel any improvement due to the reduction
of the spectral splatter. The opposite procedure (reducing F; and B so that
more frequency channels become available) increases not only the spec-
tral splatter but also signal distortion and intersymbol interference, so the
amount of useful reduction is limited.

Itis assumed that L omnidirectional antennas are deployed to achieve spa-
tial diversity at the mobiles. The antennas are separated from each other
by several wavelengths, so that the fading of both the desired signal and
the interfering signals at one antenna is independent of the fading at the
other antennas. A few wavelengths are adequate because mobiles, in con-
trast to base stations, tend to receive superpositions of reflected waves ar-
riving from many random angles. Because of practical physical constraints,
spatial diversity will ordinarily be effective only if the carrier frequencies
exceed roughly 1 GHz. Polarization diversity and other forms of adaptive
array processing are alternatives.

One method of combining antenna outputs is predetection combining,
which requires the estimation of the signal and interference-plus-noise
power levels at each antenna for maximal-ratio combining or selection di-
versity and requires the cophasing of the L antenna outputs for maximal-
ratio or coherent equal-gain combining. Since the relative phases and
power levels of the signals at the L antennas change after every hop, it is al-
most always impractical to implement predetection combining. As a much
more practical alternative, a receiver can combine the demodulated outputs
rather than the signals from the L antennas. This postdetection combining
eliminates the cophasing and does not require the time alignment of L sig-
nals in practical applications because any misalignment is much smaller
than a symbol duration. The estimation of power levels can be eliminated
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by the use of a fixed combining rule, such as equal-gain or square-law com-
bining.

In the receiver of a frequency-hopping system, each antenna output is de-
hopped and filtered. The interference plus noise in each dehopped signal
is approximated by independent bandlimited white Gaussian noise, with
equivalent power given by

K
ol =02+ pu (4-6)
i=1

where o2 is the thermal noise power, K is the number of active interfer-
ing mobiles, and p,; is the local-mean interference power received from
mobile i. The Gaussian model is reasonable, especially for large numbers
of mobiles, because the interference signals are asynchronous, fade inde-
pendently, and experience different Doppler shifts. The total interference
power is approximately uniform (white) over the receiver passband fol-
lowing dehopping if BT, = ¢ < 1. The L diversity antennas are assumed to
be close enough to each other that the power-law losses and shadowing are
nearly the same, and thus the local-mean power from a mobile is the same
at each antenna. Each active interfering mobile may actually represent a
cluster of mobiles. In this cluster, some discipline such as carrier-sense mul-
tiple access is used to ensure that there is at most one transmitted signal at
any time.

The desired signal is assumed to experience frequency-nonselective
Rayleigh fading. The Rayleigh fading model is appropriate under the pes-
simistic assumption that the propagation paths are often obstructed, and
thus, the power of the direct line-of-sight signal is small compared with the
reflected signal power. Frequency-nonselective fading occurs if B < Beop.
Rayleigh fading may be negligible if mobile speeds are very low, which
would occur if each mobile consisted of a person walking. Shadowing
would still occur but would be slowly varying over time.

To avoid spectral spreading due to amplifier nonlinearities, it is desirable
for the signal modulation to have a constant envelope. Noncoherent de-
modulation is nearly always a practical necessity in frequency-hopping
systems unless the hopping band is narrow. Accordingly, good modulation
candidates are differential phase-shift keying (DPSK) and minimum-shift
keying (MSK) or some other form of spectrally compact continuous-phase
frequency-shift keying (CPFSK) or continuous-phase modulation (CPM).
Although the classical theory indicates that DPSK provides an intrinsic per-
formance advantage over noncoherent MSK, this advantage is illusory in
a frequency-hopping system because of the large bandwidth requirement
of DPSK [3]. If the total hopping bandwidth W is fixed, the number of fre-
quency channels available for DPSK signaling is much smaller than it is
for MSK signaling. This reduction in frequency channels largely or entirely
offsets the intrinsic performance advantage of DPSK, which is small when
postdetection combining is used, as shown subsequently. Alternatively, if
the bandwidth B is fixed, a DPSK signal will experience more distortion
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and spectral splatter than an MSK signal. Any pulse shaping of the DPSK
signals will alter its constant envelope. Another disadvantage of DPSK is
due to the usual lack of phase coherence from hop to hop, which necessi-
tates an extra phase-reference symbol at the start of every hop dwell time
and thereby causes a performance loss. Thus, DPSK does not appear to be
as suitable a means of modulation as MSK, CPFSK, or CPM for frequency-
hopping communications.

Spectrally compact CPFSK signals do not have enough frequency shift
to be demodulated by classical noncoherent demodulators with parallel
matched filters and envelope detectors, but can be demodulated by a fre-
quency discriminator. We consider binary MSK with discriminator demod-
ulation. For postdetection diversity, the outputs of L discriminators are
weighted and combined, as shown in Figure 12. The weighting is by the
square of the envelope at the input to each discriminator. When the de-
sired signal undergoes independent Rayleigh fading at each antenna and
the channel parameters remain constant for at least one symbol duration, a
calculation using the results of Adachi and Parsons [33] yields the symbol-

error probability
C(2L-1\ (1 1,\*  _;
P, = ( I ) <Z+§< ) (P) (4-7)

where ( = BT}, p = ps/o?, and p; is the local-mean power of the desired
signal. A comparison of this equation with (2-67) and (2-101) when ¢ =1 so
that p = ¥ verifies that MSK with discriminator demodulation and square-
law postdetection combining provides nearly the same performance as
DPSK. The slowly varying nature of shadowing ensures that P; is almost
always nearly constant over Ty in practical systems. The information-
bit error rate following hard-decision decoding can be calculated from P;
with well-known equations. The theoretical loss due to using postdetection
rather than predetection combining is less than a decibel [33].

Let d represent the duty factor, which is defined as the probability that an
interferer using the same frequency will degrade the reception of a symbol.
Thus, d = q,¢3 is the product of the probability ¢; that an interferer is trans-
mitting and the probability ¢, that a significant portion of the interferer’s
transmitted waveform occurs during the symbol interval. The probability
g2 is upper bounded and well approximated by the probability that there
is any overlap in time of the interference and the symbol interval. For syn-
chronized frequency-hopping pulses, g2 = 1. Since T, > T, it follows from
elementary probability that for unsynchronized frequency-hopping pulses,
@2 ~ (Ty+ Ts)/Th. For voice communications with voice-activity detection,
¢1 = 0.4 is a typical value.

4.2 Peer-to-Peer Simulation Results

This section considers a peer-to-peer network of independent, identical,
frequency-hopping systems that have omnidirectional antennas, generate
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Figure 42. Geometry of
a peer-to-peer
communication
network.
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the same output power, share the same carriers and frequency channels,
and are nearly stationary in location over a single symbol duration. Since
for peer-to-peer communications it is assumed that an interfering mobile
may transmit in any frequency channel with equal probability, the proba-
bility that power from an interferer enters the transmission channel of the
desired signal is

P=i @)
It is assumed that M is sufficiently large that we may neglect the fact that
a channel at one of the ends of the hopping band has only one adjacent
channel instead of two. Consequently, the probability that the power from
an interferer enters one of the two adjacent channels of the desired signal is

Po=— (4-9)

The probability that the power enters neither the transmission channel nor
the adjacent channels is (1 — 3d/M). These equations make it apparent that
the performance of a frequency-hopping system depends primarily on the
ratio M1 = M/d. This ratio is called the equivalent number of channels be-
cause any decrease in the duty factor has the same impact as an increase in
the number of frequency channels; what matters most for performance is
this ratio.

In the simulation, the locations of the mobiles are assumed to be uniformly
distributed in a circular region surrounding a specific mobile receiver, as
illustrated in Figure 42. Therefore, the radial distance of a mobile from the
receiver has the probability distribution function

2

G(T) = ﬁ ’

0<r<R (4-10)

where R is the radius of the circle. The distance of the desired mobile is
randomly selected according to this distribution with R = Ry, where Ry is

® Receiving mobile
x Desired mobile
O Interfering mobile
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the maximum communication range and corresponds to a received area-
mean signal power equal to po. The distance of each interfering mobile
is randomly selected according to this distribution with R = R;. The se-
lected distance of the desired mobile is substituted into (1-3) of Section
1.1 as the value of r, and then (1-3) is used to randomly select the local-
mean power of the desired signal at the receiver. The probabilities given
by (4-8) and (4-9) are used to determine if an interfering mobile produces
power in the transmission channel or in one of the adjacent channels of
the desired signal. If the power enters the transmission channel, then the
power level is randomly selected according to (1-3) with the distance of
the mobile substituted. If the power enters one of the adjacent channels,
then the potential local-mean power level is first randomly selected via (1-
3) and then multiplied by K, to determine the net interference power py;
that appears in (4-6). The effects of py and o2 are determined solely by the
minimum area-mean SNR, which occurs at the maximum range r = Rp of
the desired signal and is equal to py/oZ. Once the local-mean power lev-
els and the noise power are calculated, the symbol error probability P; is
calculated with (4-6) and (4-7). Each simulation experiment was repeated
for 10,000 trials, with different randomly selected mobile locations in each
trial. The performance measure is the spatial reliability, which is defined
as the fraction of trials for which P; is less than a specified performance
threshold E. The appropriate value of the threshold depends on the desired
information-bit error probability and the error-correcting code. The spatial
reliability is essentially the probability that an outage does not occur.

Figures 43 to 45 depict the results of three simulation experiments for peer-
to-peer networks. The figures plot the spatial reliability as a function of K
for various values of L, assuming (4-7), Rayleigh fading, MSK, and that 8 =
4,0,=8dB,E=0.01,(=1, K;=0.015, Ry = 1, and R; = 2. The value of K
results from assuming contiguous frequency channels so that F; = B. The
units of Rp and R; are immaterial to the calculation of the spatial diversity.

Figure 43 provides a baseline with which the other figures may be com-
pared. For this figure, the assumptions are that M = 250, and the minimum
area-mean SNR = 20 dB. The number of equivalent frequency channels M;
could model voice communications with M =90 channels and d = 0.36; al-
ternatively, it could model continuous data communications with M = 225
and d = 0.9. The figure illustrates the dramatic performance improvement
provided by dual spatial diversity when Rayleigh fading occurs. Further
increases in diversity yield diminishing returns. One can assess the impact
of the spectral splatter in this example by setting K, = 0 and observing the
change in the spatial reliability. The change is small, and nearly impercep-
tible if K < 25.
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Figure 43. Spatial
reliability for M; = 250
and minimum

area-mean SNR = 20 dB.
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Figure 44 illustrates the effect of increasing the number of equivalent chan-
nels to M; = 500. Let the capacity of the network be defined as the maximum
number of interfering mobiles for which the spatial reliability exceeds 0.95.
Figures 43 and 44 and other simulation results indicate that for the param-
eter values selected, the capacity C for dual spatial diversity is approxi-
mately proportional to Mj; specifically, C' = 0.07 M; for 100 < M; < 1000.
If E is increased to 0.02, the capacity for dual spatial diversity increases by
approximately 20 percent.

Figure 45 illustrates the sensitivity of the network to an increase in the min-
imum area-mean SNR, which may be due to a change in p, or o2. For no
spatial diversity or dual diversity, a substantial performance improvement
occurs when the minimum area-mean SNR = 25 dB. Other simulation re-
sults indicate that a decrease in the minimum area-mean SNR below 20 dB
severely degrades performance.

Since (4-7) relates P to p, the local-mean signal-to-interference-plus-noise
ratio (SINR), the spatial reliability has an alternative and equivalent defini-
tion as the fraction of trials for which the SINR exceeds a specified thresh-
old Z;. Thus, the curves labeled L = 1, 2, 3, and 4 in Figures 43 to 45 (and
later in Figures 47 to 51) correspond to Z; = 17.7 dB, 10.0 dB, 7.7 dB, and
6.5 dB, respectively.

4.3 Cellular Systems
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In a cellular network, each base station assigns separate directional sec-
tor antennas or separate outputs of a phased array to cover disjoint angu-
lar sectors in both the transmitting and receiving modes. Typically, there
are three sectors, and 27 /3 radians are in each angular sector. The mobile
antennas are assumed to be omnidirectional. Ideal sector antennas have
uniform gain over the covered sector and negligible sidelobes. With these
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Figure 44. Spatial
reliability for M; = 500
and minimum
area-mean SNR = 20 dB.

Figure 45. Spatial
reliability for M; =250
and minimum
area-mean SNR = 25 dB.
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antennas, only mobiles in the covered sector can cause multiple-access in-
terference on an uplink from a mobile to a base station, and the number of
interfering signals on the link is reduced by a factor s approximately equal
to the number of sectors. Only the antenna serving a cell sector oriented to-
ward a mobile can cause multiple-access interference on a downlink from
the controlling base station to a mobile. Therefore, the number of interfer-
ing signals is reduced approximately by a factor s on both the uplinks and
downlinks. Practical sector antennas have patterns with sidelobes that ex-
tend into adjacent sectors, but the performance degradation due to overlap-
ping sectors is significant only for a small percentage of mobile locations.
Ideal sector antennas are assumed in the subsequent simulation.
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Spatial diversity may be obtained through the deployment of L antennas in
each mobile and L antenna elements for each sector antenna of each base
station. The antennas are separated from each other enough that the fad-
ing of both the desired signal and the interfering signals at one antenna is
independent of the fading at the other antennas. A few wavelengths are ad-
equate for a mobile because it tends to receive superpositions of reflected
waves arriving from many random angles. Many wavelengths separation
may be necessary for a base station located at a high position, and polar-
ization diversity may sometimes be a more practical means of obtaining
diversity.

In a cellular network, the frequency-hopping patterns can be chosen so that
at any given instant in time, the frequencies of the mobiles within a cell
sector are all different and, hence, the received signals are all orthogonal
if the mobile transmissions are properly synchronized. Exact synchroniza-
tion on a downlink is possible because a common timing is available. The
advancing or retarding of the transmit times of the mobiles enables the
arrival times at the base station of the uplink signals to be synchronized.
The switching time or guard time between frequency-hopping pulses must
be large enough to ensure that neither a small synchronization error nor
multipath signals can subvert the orthogonality. The appropriate transmit
times of a mobile can be determined from position information provided
by the Global Positioning System and the known location of the base sta-
tion. Alternatively, the transmit times can be determined from arrival-time
measurements at the base station that are sent to the mobile. These meas-
urements may be based on the adaptive thresholding [16] of the leading
and/or trailing edges of a sequence of frequency-hopping pulses.

Let N; denote the number of mobiles assigned to a cell sector. To ensure or-
thogonality of N received signals within a cell sector, a simple procedure is
to generate a periodic frequency-hopping pattern that does not repeat until
all the carrier frequencies in a hopset of size M > N, have been used. Mo-
bile n is assigned this pattern with a delay of n — 1 hop durations, where n
=1,2,..., N,. If the patterns associated with different sectors are all drawn
from a set of one-coincidence sequences [34], then any two signals from
different cells or sectors will collide in frequency at a base station at most
once during the period of the hopping patterns. However, the use of one-
coincidence sequences throughout a network requires frequency planning,
which may be too costly in some applications.

It is possible to ensure not only the orthogonality of N, signals in a sector
but also that the received carrier frequencies in any two patterns are sepa-
rated by at least vB, where v is a positive integer, so that the spectral splat-
ter is greatly reduced or negligible. Let k=0, 1, 2, ..., M —11abel the hopset
frequencies in ascending order. Suppose that a frequency-hopping pattern
is generated that does not repeat until all the carrier frequencies in a hopset
of size M > v N, have been used. When mobile 1 hops to frequency k, mo-
bile n hops to frequency [k + v (n — 1)] modulo M. Frequency-hopping sig-
nals that use frequencies determined by this procedure are called separated
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Figure 46. Hexagonal
grid of cells.
Communicators are in
sector A. Sector B is an
interfering sector.

orthogonal signals. Choosing v = 2 will generally be adequate because spec-
tral splatter from channels that are not adjacent will be nearly always in-
significant if a spectrally compact data modulation is used.

Frequency-hopping CDMA networks largely avoid the near-far problem
by continually changing the carrier frequencies so that frequency collisions
become brief, unusual events. Thus, power control in a frequency-hopping
CDMA network is unnecessary, and all mobiles may transmit at the same
power level. When power control is used, it tends to benefit signals from
mobiles far from an associated sector antenna while degrading signals from
mobiles close to it. Simulation results [35] indicate that even perfect power
control typically increases system capacity by only a small amount. There
are good reasons to forego this slight potential advantage and not use
power control. The required overhead may be excessive. If geolocation of
mobiles is done by using measurements at two or more base stations, then
the power control may result in significantly less signal power arriving at
one or more base stations and the consequent loss of geolocation accuracy.

Consider communications between a base station and a mobile assigned to
sector A of a particular cell, as illustrated in Figure 46 for a hexagonal grid
of cells. Because of orthogonality, no other signal in sector A will use the
same carrier frequency at the same time and thereby cause interference in
the transmission channel (current frequency channel) of either the uplink or
downlink. Consider another sector covered by the sector antenna of sector
A, for example, sector B. Assuming that an interfering signal may indepen-
dently use any frequency in the network hopset with equal probability, the
probability that a mobile in the covered sector produces interference in the
transmission channel of the uplink and degrades a particular symbol is

__dN,

P, %

(4-11)

This equation also gives the probability that a sector antenna serving an-
other sector that is oriented toward the desired mobile degrades a symbol
by producing interference in the transmission channel of the downlink. Be-
cause of orthogonality within each sector, no more than one signal from a
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sector will produce interference in the transmission channel of either link.
A sector with mobiles that may interfere with communications over an
uplink or a sector with an antenna that may produce interference over a
downlink is called an interfering sector.

It is assumed that M is sufficiently large that we may neglect the fact that a
channel at one of the ends of the hopping band has only one adjacent chan-
nel within the band instead of two. Let N; = 1if a signal from an interfering
sector uses the transmission channel of communicators in sector A; let N
= 0 if it does not. The probability that Ny = 1 is N;/M. The N, — N; in-
terference signals from a sector that do not enter the transmission channel
are assumed to be randomly distributed among the M — 1 frequency chan-

nels excluding the transmission channel. There are ( NAS’I__AI,I) ways to choose

the channels with interference signals. There are () ways to choose one

of the two adjacent channels to have an interference signal and ( N:Xf &f’_l)
ways to choose N; — N1 — 1 channels with interference signals out of the
M — 3 channels excluding both the transmission channel and the adjacent
channels. The probability that an adjacent channel with an interference sig-
nal actually receives interference power is g;. Similarly, there is one way
to choose both adjacent channels with interference signals and (,, 3% ,)
ways to choose N — N — 2 channels with interference signals out of M — 3
channels. The probability that exactly one of the two adjacent channels with
interference signals actually receives interference power is 2¢;(1 — q1). Be-
cause of the sector synchronization, either all of the signals from a sector
overlap a desired symbol with probability g, or none of them do. There-
fore, the probability that a symbol is degraded by interference in exactly

one of the adjacent channels of the communicators is

(] vy (w25 —2)
Pa = =37 0+ T 2a(l - q)ge
(Ns——Nl) (Ns—Nl)
2d(N, — Ny)

- (M—1)(M~2)[M“2‘41(Ns—Nl—l)], M >N, (4-12)

Similarly, the probability that a symbol is degraded by interference in both
adjacent channels is

(ymny—2)
P = 1(\131\—}1:’11—)2 6o

Ns—Ny
. dQI (Ns—'Nl)(Ns—Nl—].)
- (M _ 1)(M _ 2) ’ M Z Ns (4‘13)

For adjacent-channel interference from within sector A, P,; and P,, are
given by the same equations with N; =1 to reflect the fact that one of the
mobiles is the communicating mobile.

Suppose that separated orthogonal frequency-hopping patterns with v =2
are used. There is no adjacent-channel interference from sector A. If a signal
from an interfering sector B uses the transmission channel so that N; =1,
an event with probability N, /M, then the carrier separation of the signals
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generated in sector B ensures that there is no adjacent-channel interference
from sector B. Suppose that no signal from sector B uses the transmission
channel so that N; = 0. Interference in exactly one adjacent channel results
if the transmission channel of the desired signal in sector A, which may be
any of M — N, channels, is located next to one of the two end channels of the
set of N separated channels being used in sector B, neglecting hopset end
effects. It also results if the transmission channel is located between two
separated channels, of which only one is currently being used in sector B,
again neglecting hopset end effects. Therefore, the probability that a symbol
is degraded by interference in exactly one of the adjacent channels of the
communicators is

— 2q, Ns;—1
Pa]. - [M_NS+M—qu1(1 ql) q2
d
= 57— W - -q)+2], M>2N,, N, =0 (4-14)
S

Interference in both adjacent channels results if the transmission channel
is located between two separated channels of sector B and both are being
used, neglecting hopset end effects. Therefore, the probability that a symbol
is degraded by interference in both adjacent channels is

_dan(Ns—1)

Py = M >2N,, N1 = 4-15
a2 M—‘Ns ) = sy 4Vl 0 ( )

44 Cellular Simulation Results

In the simulation, the spatial configuration consists of a hexagonal grid of
cells with base stations at their centers. Each cell has a radius R, from its
center to a corner. A central cell is surrounded by an inner concentric tier of
6 cells and an outer concentric tier of 12 cells, as depicted in Figure 46. Other
tiers are assumed to generate insignificant interference in the central cell.
An equal number of mobiles, each transmitting at the same power level,
is located in each sector and served by that sector’s antenna. This assump-
tion is pessimistic since slightly improved performance may be possible if a
mobile is served by the sector antenna providing a signal with the least at-
tenuation and if hysteresis effects during handoffs are not too severe. Each
signal transmitted by a sector antenna is allocated the same power. The
set of frequency-hopping patterns used in each sector is assumed to be se-
lected independently of the other sectors. Since the parameter Ry in (1-1)
and (1-3) is equal to the maximum communication range, po is the mini-
mum received area-mean power of a desired signal. The location of each
mobile within a sector is assumed to be uniformly distributed.

In each simulation trial for communications in sector A of the central cell,
the location of the desired mobile is randomly selected according to the
uniform distribution. The selected distance of the desired mobile is substi-
tuted into (1-3) as the value of r, and then (1-3) is used to randomly select
the local-mean power of the desired signal at the receiver. Each transmit-
ting and receiving beam produced by a sector antenna is assumed to have
a constant gain over its sector and zero gain elsewhere.
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For an uplink of sector A, interference is assumed to arrive from mobiles
within sector A, mobiles in the 6 sectors of the two cells in the inner tier
that were covered by the beam of sector A, and mobiles in the 11 complete
sectors and 2 half-sectors of the five cells in the outer tier completely or par-
tially covered by the beam. The 2 half-sectors are approximated by an addi-
tional complete sector in the outer tier. Equations (4-11) to (4-15) are used to
determine if a sector contains mobiles that produce power in the transmis-
sion channel or in one or both of the adjacent channels. If the sector does,
then the locations of the three or fewer interfering mobiles are randomly
selected according to the uniform distribution, and their distances from the
central cell’s base station are computed.

For a downlink of sector A, interference is assumed to arrive from the fac-
ing sector antenna of each cell in the two surrounding tiers. Equations (4-11)
to (4-15) are used to determine if a signal generated by an interfering sec-
tor antenna produces power in the transmission channel or the adjacent
channels of the desired signal. If so, then the distance between the sector
antenna and the desired mobile is computed.

If the power from an interferer enters the transmission channel, then the
power level is randomly selected according to (1-3), with the appropriate
distance substituted. If the power enters an adjacent channel, then the po-
tential local-mean power level is first randomly selected via (1-3) and then
multiplied by K to determine the net interference power p,,; that appears
in (4-6). The shadowing parameter o, is assumed to be the same for all
signals originating from all cells. The effects of pp and o2 are determined
solely by po/o2, the minimum area-mean SNR. Since only ratios affect the
performance, the numerical value of Ry in the simulation is immaterial and
is set equal to unity.

Once the local-mean power levels and the noise power are calculated, the
symbol error probability is calculated with (4-6) and (4-7). Each simulation
experiment was repeated for 20,000 trials, with different randomly selected
mobile locations in each trial. The performance measure is the spatial re-
liability, which is a function of 5, the SINR. The appropriate value of the
threshold E depends on the desired information-bit error probability and
the error-correcting code.

Figures 47 to 50 depict the results of four simulation experiments for the
uplinks of a cellular network. The figures plot spatial reliability as a func-
tion of N; for various values of L, assuming MSK, three sectors, and that 3
=4,91=04,¢9,=10,0,=8dB, E=0.01,{ =1, and K, = 0.015. The value of
K results from assuming contiguous frequency channels so that F; = B.

Figure 47 provides a baseline with which other figures may be compared.
For this figure, separated orthogonal frequency hopping with v =2, M =
100, and minimum area-mean SNR = 30 dB are assumed. The figure il-
lustrates the dramatic performance improvement provided by dual spa-
tial diversity when Rayleigh fading occurs. Further increases in diversity
yield diminishing returns. One can assess the impact of the spectral splat-
ter in this example by setting K, = 0 and observing the change in spatial
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Figure 47. Spatial
reliability for uplinks,
separated orthogonal
hopping, M =100, and
minimum area-mean
SNR =30 dB.

Figure 48. Spatial
reliability for uplinks,
orthogonal hopping, M
= 100, and minimum
area-mean SNR = 30 dB.
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reliability. The change is insignificant because by far the most potentially
damaging splatter arises from mobiles in the same sector as the desired

mobile, and the separated orthogonality has eliminated it.

Figure 48 shows the effect of using orthogonal rather than separated or-
thogonal frequency hopping. The performance loss is significant in this ex-
ample and becomes more pronounced as M decreases. When separated or-
thogonal frequency hopping is used and the spectral splatter is negligible,
then the spatial reliability depends primarily on M; = M/d, the equivalent

number of channels. In Figure 47, M; = 250.
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Figure 49. Spatial
reliability for uplinks,
separated orthogonal
hopping, M =200, and
minimum area-mean
SNR =30 dB.
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Figure 49 illustrates the effect of increasing M to 200, and hence increas-
ing M to 500. The uplink capacity C,, of a cellular network is defined as the
maximum number of interfering mobiles per cell for which the spatial reli-
ability exceeds 0.95. Figures 47 and 49 and other simulation results indicate
that for three sectors per cell, dual diversity, and the other parameter val-
ues selected, the uplink capacity is C, = 0.108 M; for 50 < M; < 1000. This
equation is sensitive to parameter variations. If the shadowing standard
deviation o; is lowered to 6 dB, it is found that C, increases by roughly 57
percent. Alternatively, if the threshold E is raised to 0.04, corresponding to
SINR =7 dB, it is found that C,, increases by roughly 59 percent.

Figure 50 illustrates the sensitivity of the network to a decrease in the min-
imum area-mean SNR, which may be due to a change in either py or o2.
A substantial performance loss occurs when the minimum area-mean SNR
is reduced to 20 dB, particularly for no spatial diversity or dual diversity.
Other simulation results indicate that an increase in the minimum area-
mean SNR beyond 30 dB barely improves performance.

The downlinks of a cellular network are considered in Figure 51, where the
models and parameter values are otherwise the same as in Figure 47. The
performance is worse for the downlinks of Figure 51 than for the uplinks
of Figure 47 because of the relative proximity of some of the interfering
sector antennas to the desired mobile. The downlink capacity C,4, which is
defined analogously to the uplink capacity, is Cy =~ 0.072 M, for 50 < M; <
1000. A more realistic comparison of the downlinks and uplinks must take
into account the differences between the high-power amplifiers and low-
noise amplifiers in the base station and those in the mobiles. Assuming a
net 10 dB advantage in the minimum area-mean SNR for the downlinks,
Figures 50 and 51 provide a performance comparison of the two links. The
performance of the downlinks is still slightly worse if L > 2 and N, > 4.
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Figure 50. Spatial
reliability for uplinks,
separated orthogonal
hopping, M =100, and
minimum area-mean
SNR =20 dB.

Figure 51. Spatial
reliability for
downlinks, separated
orthogonal hopping, M
= 100, and minimum

area-mean SNR = 30 dB.
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Compared with direct-sequence systems, frequency-hopping systems have
a bandwidth advantage in that frequency hopping over a large, possibly
noncontiguous, spectral band is as practical as direct-sequence spread-
ing over a much smaller, necessarily contiguous, spectral band. Even de-
prived of its bandwidth advantage, as well as power control and the use of
one-coincidence codes, frequency-hopping CDMA can provide nearly the
same multiple-access capacity over the uplinks as direct-sequence CDMA
subject to realistic power-control imperfections. For a numerical example,
consider a cellular network with three sectors, shadowing standard devi-
ation 05 = 6 dB, and d = ¢; = 3/8 due to the voice activity. A contigu-
ous spectral band of bandwidth W = 1.25 MHz is occupied by the CDMA
signals. The symbol rate is 1/Ts = 8 kb/s so that the processing gain is
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4.5 Summary
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156.5 for direct-sequence CDMA, and the number of frequency channels
for frequency-hopping CDMA with ¢ = BT, = 1 is M = 156. For direct-
sequence CDMA, it is assumed that py is the received power at the base
station from all associated mobiles when the power control is perfect and
that the SNR before the despreading is —1 dB. Therefore, the SNR is 20.94
dB after the despreading. For frequency-hopping CDMA without power
control, the minimum area-mean SNR is assumed to be 20.94 dB. The up-
link capacity C, is calculated as the number of mobiles per cell that can be
accommodated while maintaining an SINR above a specified threshold Z
with 95 percent probability. For frequency-hopping CDMA with dual di-
versity and Z =10 dB, it is found that C,, ~ 60. For direct-sequence CDMA
with dual diversity and coherent phase-shift keying, a comparison of (4-7)
with (2-67) and (2-62) indicates that a comparable performance can be ob-
tained when the SINR is roughly 3 dB less. Thus, the threshold for direct-
sequence CDMA is set at Z = 7 dB. Using (3-112) with Z = 7 dB, it is found
that Cy, ~ 60 when the power-control error has o, = 2 dB.

For coherent demodulation of a signal that hops over a wide band to be a
practical possibility in a fading environment, either a pilot signal must be
available or the dwell time must be large enough that a small portion of it
can be dedicated to carrier synchronization. In the latter case, the degrada-
tion due to the dedicated portion and the occasional failure to achieve car-
rier synchronization for a frequency-hopping pulse must be less than the
potential gain due to the coherent demodulation, which is'large. If ideal co-
herent demodulation is assumed in the preceding example so that Z = 7 dB,
then it is found that C,, ~ 108, an increase of 80 percent. This uplink ca-
pacity is approximately obtained by direct-sequence CDMA with Z =7 dB
when o, = 0.4 dB, an impractically low value.

The performance of frequency-hopping CDMA communications in a mo-
bile peer-to-peer network is greatly improved by the use of spatial diver-
sity, which usually requires carrier frequencies in excess of 1 GHz. A crucial
parameter is the number of equivalent frequency channels, which can be
increased not only by an increase in the number of frequency channels, but
also by a decrease in the duty factor of the network users. The data modu-
lation method that is most suitable appears to be MSK or some other form
of CPFSK or CPM. For these modulations, BT, = 1, and the scenario mod-
eled, the spectral splatter from adjacent channels, is not an important factor
if the number of interferers is much smaller than the number of equivalent
channels.

For a specified sectorization, diversity, and waveform, the capacity of a cel-
lular frequency-hopping CDMA network is approximately proportional to
the equivalent number of frequency channels. Thus, a desired capacity can
be attained by choosing a sufficiently large number of frequency channels.
A major advantage of frequency hopping is that these channels do not have
to be spectrally contiguous but can be scattered throughout a large spectral
band. Another advantage is that power control is not required. Its absence



allows a substantial reduction of system complexity and overhead cost and
facilitates geolocation. Sectorization, orthogonality, and dual diversity are
invaluable, but higher levels of diversity offer sharply decreasing gains. If
spectral splatter is a problem, separated orthogonal signaling can be used
to eliminate it. The overall limit on the capacity of a frequency-hopping
CDMA network appears to be set more by the downlinks than the uplinks.

Frequency hopping may be added to almost any communication system to
strengthen it against interference or fading. For example, the set of carri-
ers used in a multicarrier direct-sequence CDMA system or the subcarri-
ers of an orthogonal frequency-division-multiplexing (OFDM) system may be
hopped. The purpose of OFDM is to enable high data-rate communications
without an elaborate equalization system by transmitting symbols simul-
taneously over a number of subcarriers.
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Appendix A. Probability Distributions

A-1 Chi-Square Distribution

Consider the random variable
Z = Z A? (A-1)

where the {A;} are independent Gaussian random variables with means
{m;} and common variance o%. The random variable Z is said to have a
noncentral chi-square (x?) distribution with N degrees of freedom and a non-

central parameter
N
A= Z m,2 (A-2)
i=1
To derive the probability density function of Z, we first note that each A4;
has the density function
. 1 (.’1: - mi)z
fa(z) = Vo &P [— —5*02—“] (A-3)
From eIementary probability, the density of Y; = A2 is ]
1 - :
fri(z) = m[fm(\/ﬂ?) + fa: (V)] u(z) (A-4)

where u(z) = 1,z > 0, and u(z) = 0,z < 0. Substituting (A-3) into (A-4),
expanding the exponentials, and simplifying, we obtain the density

2 Iz
fy(z) = \/2_711_50 €exp (—w ;'072’%) cosh (m;\z/_) u(z) (A-5)

The characteristic function of a random variable X is defined as

Cx(iv) = Ele*X] = [ fx(@)explive) da (A-6)

—00

where j = 1/—1, and fx(z) is the density of X. Since Cx(jv) is the conju-
gate Fourier transform of fx(z),

£x(@) = 5= [ Cxliv) exp(ive) do »-7)
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From Laplace or Fourier transform tables, it is found that the characteristic
function of fy;(z) is

) 0.2
) = S *9)

The characteristic function of a sum of independent random variables is
equal to the product of the individual characteristic functions. Because Z is
the sum of the Y}, the characteristic function of Z is

exp[jAv/(1 — j20%v)]

CZ(jV) = (1 _ j20'21/)N/2

(A-9)

where we have used (A-2). From (A-9), (A-7), and Laplace or Fourier trans-
form tables, we obtain the probability density function of noncentral x? ran-
dom variable with N degrees of freedom and a noncentral parameter \:

:1:2';2)\] Injos (Q) u(z)  (A-10)

A

1 (a:)(N—2)/4

f20) = 50 e |-

where I, ( ) is the modified Bessel function of the first kind and order o
This function may be represented by

o T /2)o+2i
Io(z) = iz:; 'L'l'(‘(—c/t-i)--ri—_l_) (A-11)

where the gamma function is defined as
T = [ v ew(-y)dy , >0 (a-12)
0

The probability distribution function of a noncentral x? random variable is

1 yy\(V-2)/4 y+ A VYA
Fy(z) 2/0 252 (X) exp (— 552 )IN/2——1 (72—" dy , 20

(A-13)

When N is even so that N/2 is an integer, then using Fz(c0) = 1 and a
change of variables in (A-13) yields

(e

where the generalized Q-function is defined as

(_2)’”‘1 exp (~ 2+ °‘2> Im_i(ax)dz  (A-15)

(o9}

2

Qe )= [ a
B

and m is an integer. Since Qm (e, 0) = 1, it follows that 1 — @, (e, B) is an

integral with finite limits that can be numerically integrated. However, the



numerical computation of the generalized Q-function is simplified if it is
expressed in alternative forms [2].

The mean, variance, and moments of Z can be easily obtained by using
(A-1) and the properties of independent Gaussian random variables. The
mean and variance of Z are

E[Z] = No?+ X (A-16)
02 = 2No* + 4)o? (A-17)

where 02 is the common variance of the {4;}.

From (A-9), it follows that the sum of two independent noncentral x? ran-
dom variables with N; and N, degrees of freedom, noncentral parameters
A1 and ), respectively, and the same parameter o2 is a noncentral x2 ran-
dom variable with N; + N; degrees of freedom and noncentral parameter
A1+ o,

A-2 Central Chi-Square Distribution

To determine the probability density function of Z when the {4;} have zero
means, we substitute (A-11) into (A-10) and then take the limit as A — 0.
We obtain

_ L N/2=1 g (— Z_ :
Alternatively, this equation results if we substitute X = 0 into the character-
istic function (A-9) and then use (A-7). Equation (A-18) is the probability
density function of a central x2 random variable with N degrees of freedom.
The probability distribution function is

_ [ 1 N2 gy (Y S _

If N is even so that N/2 is an integer, then integrating this equation by parts
N/2 — 1 times yields
N/2-1

Fz(z) =1~ exp (—2%) 3y % (-2%)1 , £>0 (A-20)
=0

By direct integration using (A-18) and (A-12) or from (A-16) and (A-17), the
mean and variance of Z are

E[Z] = No? (A-21)
02 = 2No* (A-22)
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A-3 Rice Distribution
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Consider the random variable

R= /A% + A2 (A-23)

where A; and A, are independent Gaussian random variables with means
m; and me, respectively, and a common variance o2. The probability distri-
bution function of R must satisfy Fr(r) = Fz(r?), where Z = A? + A2 is
a x? random variable with two degrees of freedom. Therefore, (A-14) w1th
N = 2 implies that

o

FR(T)ZI_Q1<_\z__X3£> ) r>0 (A'24)

where XA = m? + mZ. This function is called the Rice probability distribution
function. The Rice probability density function, which may be obtained by dif-
ferentiation of (A-24), is

Fa(r) = Sy exp ( ";ﬁ) Io (2@) u(r) (A-25)

The moments of even order can be derived from (A-23) and the moments
of the independent Gaussian random variables. The second moment is

E[R? =20+ ) (A-26)

In general, moments of the Rice distribution are given by an integration
over the density in (A-25). Substituting (A-11) into the integrand, inter-
changing the summation and integration, changing the integration vari-
able, and using (A-12), we obtain a series that is recognized as a special
case of the confluent hypergeometric function. Thus, -

A A
E[Rn] = (20’2)"'/26){}) (‘“@)P(l“*' ) 1F1 ( ;l,l;é;i) ) TZZO
(A-27)

where the confluent hypergeometric function is defined as

1Fy (o, B;) = Z I;iﬁ;gﬁ ))x,, B#0,-1,-2,... (A-28)

The Rice density function often arises in the context of a transformation
of variables. Let A; and A, represent independent Gaussian random vari-
ables with common variance o and means m and zero, respectively. Let
R and © be implicitly defined by A; = Rcos® and A; = Rsin©. Then
(A-23) and © = tan~!(A2/A2) describes a transformation of variables. A
straightforward calculation yields the joint density function of R and ©:

fre(r,0) =

( r?2 — 2rmcos @ + m?
5 eXp

o), 20, < (429



The density function of the envelope R is obtained by integration over 6.
Since

1 27
Iy(z) = o /0 exp(z cosu) du (A-30)

this density function reduces to the Rice density function of (A-25). The
density function of the angle © is obtained by integrating (A-29) over 7.
Completing the square in the argument of (A-29), changing variables, and
defining

00 2
Qz) = \/—% | exp (—%—) dy = % erfc (%) (A-31)

where erfc( ) is the complementary error function, we obtain

1 m? m cos 0 m2 sin? @ mcos 0
a0 = 5o (~502) + T e () [1-@ (T
o< (A32)

Since (A-29) cannot be written as the product of (A-25) and (A-32), the ran-
dom variables R and © are not independent.

Since the density function of (A-25) must integrate to unity, we find that

0 r2 vV A
/0 7 exp (— 2—b2>Io (——55——> dr = b® exp (W) (A-33)

where ) is a positive constant. This equation is useful in calculations in-
volving the Rice density function.

A-4 Rayleigh Distribution

A Rayleigh-distributed random variable is defined by (A-23) when 4; and
A, are independent Gaussian random variables with zero means and a
common variance o2. Since Fr(r) = Fz(r2), where Z is a central x? ran-
dom variable with two degrees of freedom, (A-20) with N = 2 implies that
the Rayleigh probability distribution function is

,,.2
Fr(r)=1—exp (—5(—7-5) , r=>0 (A-34)

The Rayleigh probability density function, which may be obtained by differ-
entiation of (A-34), is

r T2
filr) = e~ ) u(r) (a35)

By a change of variables in the deﬁning integral, any moment of R can be
expressed in terms of the gamma function defined in (A-12). Therefore,

E[R"] = (20?)™T (1 + 125) (A-36)
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Certain properties of the gamma function are needed to simplify (A-36).
An integration by parts of (A-12) indicates that I'(1 + z) = zI'(z). A direct
integration yields I'(1) = 1. Therefore, when n is an integer, I'(n) = (n—1)!.
Changing the integration variable by substituting y = 22 in (A-12), it is
found that I'(1/2) = /7.

Using these properties of the gamma function, we obtain the mean and the
variance of a Rayleigh-distributed random variable:

E[R] = /=0 (A-37)

2 _ _Ty 2 _
o = (2 2)0 (A-38)
Since A; and A3 have zero means, the joint probability density function of
the random variables R = /A7 + A3 and © = tan™!(4,/4,) is given by
(A-29) with m = 0. Therefore,

T r?
= p| —— > < -

fre(r,8) 57 ©XP ( 202) , 7>0, |6<~w (A-39)
Integration over 6 yields (A-35), and integration over r yields the uniform
probability density function:

fo(6) =5, lo]<n (A-40)
m
Since (A-39) equals the product of (A-35) and (A-40), the random variables
R and © are independent. In terms of these random variables, 4; = Rcos©
and A2 = Rsin®©. A straightforward calculation using the independence
and densities of R and © verifies that A; and A, are independent, zero-
mean, Gaussian random variables with common variance o2.

Since the square of a Rayleigh-distributed random variable may be ex-
pressed as R? = A} + A2, where 4; and Aj are zero-mean independent
Gaussian random variables with common variance 02, R? has the dis-
tribution of a central chi-square random variable with 2 degrees of free-
dom. Therefore, (A-18) with N = 2 indicates that the square of a Rayleigh-
distributed random variable has an exponential probability density func-
tion with mean 202,

A-5 Sum of Independent, Exponentially Distributed Random Variables
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Consider the random variable

Z=3Y, (A-41)
where the {Y;} are independent, exponentially distributed random vari-
ables with unequal positive means {m;}. The exponential probability den-
sity function of Y; is

fri(z) = mi exp (—7-;5-) u(z) (A-42)



A straightforward calculation yields the characteristic function

1

Cri(v) = T—— o (A-43)
Since Z is the sum of independent random variables, (A-43) implies that its

characteristic function is

N
) 1
Cz(jv) = g Ry — (A-44)
To derive the probability density function of Z, (A-7) is applied after first
expanding the right-hand side of (A-44) in a partial-fraction expansion. The
result is

N
B; z
fa(z) = E exp (‘E) u(z) (A-45)
i=1"" ¢
where
N :
M , N>2
1 , N=1

and m; # my, i # k. A direct integration and algebra yields the probability
distribution function

N
Fz(m)zl—ZBz—exp(—i——), z>0 (A-47)
i=1 g
Equations (A-45) and (A-12) give
N
E[Z"]=T(1+n)Y Bm}, n>0 (A-48)

i=1

When the {m;} are equal so that m; = m, 1 < i < N, then Cz(jv) =
(1 — jym)~N. Therefore, the probability density function of Z is

x

F2(0) = =gy e (—52) ulo) (a49)

which is a special case of the gamma density function. Successive integration
by parts yields

s\ =2 1/z\
Fz(z)=1—exp (- E) ; J(E) (A-50)
From (A-49) and (A-12), the mean and variance of Z are found to be
E[Z] = Nm (A-51)
0% = Nm? (A-52)
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Appendix B. Signal Representations

B-1 Hilbert Transform

Consider a real-valued function g¢(t) defined in the time interval
—00 < t < oo. The Hilbert transform of g(t) is defined by

Ho®) =00 -7 [ L B1)

_ot—u

Because this integrand has a singularity, we define the integral as its
Cauchy principal value. Thus,

/mi’ﬁ‘ldu=1im[/_:€tf’@du+/twg—(“)—du] (B-2)

o t—u €e—0 u tet—u
provided that the limit exists. Subsequently, integrals are to be interpreted
as Cauchy principal values if they contain singularities.

The definition of the Hilbert transform indicates that §(¢) may be inter-
preted as the convolution of g(t) with 1/xt. Therefore, §(t) results from
passing g(t) through a linear filter with an impulse response equal to 1/7t.
The transfer function of the filter is given by the Fourier transform

f{l}—_—foowdt (B-3)

7t —o0 7t

where j = v/—1. This integral can be rigorously evaluated by using contour
integration. Alternatively, we observe that since 1/¢ is an odd function,

11 _ . [Tsin2nft
= —j sgn(f) (B-4)

where sgn(f) is the signum function defined by

1, f>0
sgn(f) =4 0, f=0 (B-5)
-1, f<0

Let G(f) = F{g(t)}, and let G(f) = F{j(t)}. Equations (B-1) and (B-4) and
the convolution theorem imply that

G(f) = —j sgn(f)G(f) (B-6)
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Because H([j(t)] results from passing g(t) through two successive filters,
each with transfer function —j sgn(f),

H[g(t)] = —g(t) (B-7)
provided that G(0) = 0.

Equation (B-6) indicates that taking the Hilbert transform corresponds to
introducing a phase sift of —90 degrees for all positive frequencies and +90
degrees for all negative frequencies. Consequently,

Hlcos 2w fot] = sin2r fot (B-8)
Hsin 27 fot] = — cos 27 fot (B-9)
These relations can be formally verified by taking the Fourier transform
of the left-hand side of (B-8) or (B-9), applying (B-6), and then taking the

inverse Fourier transform of the result. If G(f) =0 for |f| > W and fo > W,
the same method yields

H{g(t) cos2m fot] = g(t)sin2n fot (B-10)
Hg(t)sin2x fot] = —g(t) cos 2w fot (B-11)

B-2 Analytic Signal and Complex Envelope
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A bandpass signal is one with a Fourier transform that is negligible except
for fo — W/2 < |f| £ fe + W/2, where 0 < W < 2f, and f, is the center
frequency. If W << f,, the bandpass signal is often called a narrowband
signal. A complex-valued signal with a Fourier transform that is nonzero
only for f > 0is called an analytic signal.

Consider a bandpass signal g(t) with Fourier transform G(f). The analytic
signal g,(t) associated with g(t) is defined to be the signal with Fourier
transform

Ga(f) = [1+sgn()IG(f) (B-12)

which is zero for f < 0 and is confined to the band |f — f.| < W/2 when
f > 0. The inverse Fourier transform of (B-12) and (B-6) imply that

9a(t) = 9(t) + 74(t) (B-13)
The complex envelope of g(t) is defined by

91(t) = ga(t) exp[—j2m fel] (B-14)

where f. is the center frequency if g(t) is a bandpass signal. Since the Fourier
transform of g;(t) is Go(f + fc), which occupies the band |f| < W/2, the
complex envelope is a baseband signal that may be regarded as an equiv-
alent lowpass representation of g(t). Equations (B-13) and (B-14) imply that
g(t) may be expressed in terms of its complex envelope as

9(t) = Re[gi(t) exp(j27 fet)] (B-15)



The complex envelope can be decomposed as
9i1(t) = ge(t) + jgs () (B-16)
where g.(t) and g,(t) are real-valued functions. Therefore, iB—lS) yields
9(t) = ge(t) cos(2m ft) — go(t) sin(27 fct) (B-17)

Since the two sinusoidal carriers are in phase quadrature, g.(¢) and g,(t) are
called the in-phase and quadrature components of g(t), respectively. These
components are lowpass signals confined to |f| < W/2.

From Parseval’s relation in Fourier analysis and (B-6), we obtain

/ " Pty di= NGRS INCORE i Zg%t)dt (B-18)

Therefore,
o0 o0 o0 (o 0]
IO PO [ ¢+ [ #wa
—00 -0 -0 -0
= 2 / g2(t)dt = 2& (B-19)
—00

where £ denotes the energy of the bandpass signal g(t).

B-3 Direct-Conversion Receiver

Receivers often extract the complex envelope of the desired signal before
applying it to a matched filter. The main components in a direct-conversion
receiver are shown in Figure B-1(a). The spectra of the received signal g(t),
the input to the baseband filter, and the complex envelope g;(t) are depicted
in Figure B-1(b). Let 2f(t) denote the impulse response of the filter. The
output of the filter is

o0

v® = [ 290)exp(-gonfer)fie—r)dr (B20)
—00

Using (B-15) and the fact that Re(z) = (z + z*)/2, where z* denotes the

complex conjugate of z, we obtain

o0

o () f(t—rydr + | atit=nes(-jansryar @20

The second term is the Fourier transform of g;(7) f(t — 7) evaluated at fre-
quency —2 f.. Assuming that g;(7) and f(¢ — 7) have transforms confined to
|f] < fe, their product has a transform confined to | f| < 2f,, and the second
term in (B-21) vanishes. If the Fourier transform of f(t) is a constant over
the passband of g;(t), then (B-21) implies that y(t) is proportional to g;(t), as
desired. Figure B-1(c) shows the direct-conversion receiver for real-valued
signals.
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Figure B-1.

Envelope extraction: (a)
direct-conversion
receiver, (b) associated
spectra, and (c)
implementation with
real-valued signals.
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The direct-conversion receiver alters the character of the noise n(t) entering
it. Suppose that n(t) is a zero-mean, white Gaussian noise process with
autocorrelation

Ra(r) = Blp(®)nt + )] = 05(r) (8-22)

where E[ | denotes the expected value, 6(7) denotes the Dirac delta func-
tion, and Np/2 is the two-sided noise-power spectral density. The complex-
valued noise at the output of Figure B-1(a) is

(o)

2(t) = / 2n(u)e 92 f(t — y) du (B-23)
~00

Since it is a linear function of n(t), z(t) is zero-mean and its real and imag-

inary parts are jointly Gaussian. The autocorrelation of a wide-sense sta-

tionary, complex-valued process z(t) is defined as

Ro(r) = 3Bl ()2(t + 7) (B-24)
Substituting (B-23), interchanging the expectation and integration opera-

tions, using (B-22) to evaluate one of the integrals, and then changing vari-
ables, we obtain

Ru(r) = Ny /_ Y W)t ) du (B-25)



If the filter is an ideal bandpass filter with Fourier transform

1, <wW
H(p)=b W=7 (B26)
0, otherwise
where W < f, then the convolution in (B-25) is easily evaluated:
Rolr) = N 2T ®-27)

For 7 > 1/W, R.(7) has a small value, and the integral of R,(7) over
(=00, 00) equals Ny. Thus, as W — oo, the autocorrelation may be approx-
imated by

R (1) = Nod(T) (B-28)
This approximation permits major analytical simplifications.
Equations (B-23) and (B-22) imply that
o o]
E[2(t)2(t + 7)] = 2Nge J47fet / eH4mI f(u + 1) f(u) du (B-29)
-0
Reasoning similar to that following (B-21) lead to
Elz(t)z(t+ 7)) =0 (B-30)

A complex-valued stochastic process z(t) that satisfies (B-30) is called a cir-
cularly symmetric process. Setting 7 = 0 in (B-30) and (B-27) yields

E[(zR(®)"] = El(' ()] = 2NoW (B-31)

E[z*(1)Z ()] =0 (B-32)

where 2% (t) and 2/ (t) are the real and imaginary parts of z(t), respectively.
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Appendix C. Jensen’s Inequality

A function g(z) defined on an open interval I is convex if

9(pr + (1 - p)y) < pg(z) + (1 — p)g(y) (C-1)

forz,yin I and 0 < p < 1. Suppose that g(z) has a continuous, nondecreas-
ing derivative ¢’(z) on I. The inequality is valid if p= 0 or 1. If z > y and
0<p<1,

pr+(1-p)y
ooz + (1 - p)y) — 9ly) = / ¢(?)dz < plz — 9)g' (o + (1 - p)y)
Yy

p N ’
< g'(z)dz
l-p /p:z+(1—p)y (

= 7olo() —gpz + (1 - p)y)]
Simplifying this result, we obtain (C-1). If y > z, a similar analysis again

yields (C-1). Thus, if g(x) has a continuous, nondecreasing derivative on I,
it is convex.

Lemma. If g(z) is a convex function on the open interval I, then
9(y) = 9(z) + 9™ (2)(y — 2) (C-2)
for all y, z in I, where g~ () is the left derivative of g(z).
Proof. If y — x > 2 > 0, then substituting p = 1 —z/(y — ) into (C-1) gives
oo+ < (1- =22 ) o)+ oo
which yields

9z +2)—g(@) _ 9@) - 9(2)
z - y—2x

If v > 0 and z > 0, then (C-1) implies that

, Yy—x>2z>0 (C-3)

v
v+ 2z

9(@) < ——gla—v)+

Y g(z +2)

which yields

9(@) —glz =) _ gle+2) - g(x)

Inequality (C-3) indicates that the ratio [¢(y)—g(x)]/(y—z) decreases mono-
tonically as y — x from above and (C-4) implies that this ratio has a lower

, 0,2>0 (C-4)
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bound. Therefore, the right derivative g*(z) existson I. If z —y > v > 0,
then (C-1) with p = 1 — v/(z — y) implies that

g(z —v) < (1 - ) 9(z) + 9(y)

T—y z—y

which yields

9(=) —9(y) _ g(z) — g(z —v)
r—y - v

, z—y>v>0 (C-5)

This inequality indicates that the ratio [g(z) — g(y)]/(z — y) increases mono-
tonically as y — z from below and (C-4) implies that this ratio has an upper
bound. Therefore, the left derivative g~ (z) exists on I, and (C-4) yields

9~ (z) <g* () (C-6)
Taking the limits as z — 0 and v — 0 in (C-3) and (C-5), respectively, and
then using (C-6), we find that (C-2) is valid for all y, z in 1.0

Jensen’s inequality. If X is a random variable with a finite expected value
E[X], and g( ) is a convex function on an open interval containing the range
of X, then

E[g(X)] = g(E[X])
Proof. Sety = X and ¢ = E[X] in (C-2), which gives ¢(X) > g(E[X]) +

g9~ (E[X))(X — E[X]). Taking the expected values of the random variables
on both sides of this inequality gives Jensen’s inequality.00
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